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Str. Mihail Kogălniceanu nr. 1

R)-3400 Cluj-Napoca, ROMANIA

1. Introduction

Let G be a group and R =
⊕

g∈G Rg a G -graded ring. If M =
⊕

g∈G Mg and

N =
⊕

g∈G Ng are G -graded rings then E.C. Dade showed in [D1] that the group

HomR(M,N) has a subgroup denoted HOMR(M,N) which can be endowed with a

natural G -grading:

HOMR(M,N)g = {f ∈ HomR(M,N) | f(Mh) ⊆ Nhg for all h ∈ G}

= HomR−gr(M,N(g)),

where R-gr denotes the category of G -graded R -modules and grade preserving R -

morphisms and N(g) is the G graded module, called the g -suspension of N , with

N(g) = N and N(g)h = Nhg for all h ∈ G .

In particular, ENDR(M) = HOMR(M,M) is a G -graded ring and HOMR(M,N)

becomes a G -graded E -module, where E = ENDR(M)opp (with grading given by Eg =

ENDR(M)g−1 ).

The natural problem which arises is to give condition under which HOMR(M,N) =

HomR(M,N). Some condition were established by Dade in [D1] and a general an-

swer was given by Gómez-Pardo, Militaru and Năstăsescu in [GMN], using among other

things the fact, proved in [GMN, Theorem 1.2], that HomR(M,N) is the completion of

HOMR(M,N) in the finite topology.

Dade also introduced in [D2] a useful generalization of G -graded modules, namely

modules graded by G -sets. We shall be interested only in modules graded by transi-

tive G -sets, so let H be a subgroup of G and denote by G/H the set {gH | g ∈ G}
of left cosets of H in G . An R -module N is G/H if N =

⊕
x∈G/H Nx (as additive
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subgroups) and RgNx ⊆ Ngx for all g ∈ G and x ∈ G/H . Denote by (G/H, R)-gr the

category of G/H -graded R -modules and grade preserving R -morphisms. Observe that

(G/G, R)-gr=R-mod, while (G/1, R)-gr = R-gr. Moreover, (G/H, R)-gr is a Grothen-

dieck category and it was investigated in detail in [NRV] and [NSV].

The construction of “HOM” was generalized in [M, section2]. If M is a G -graded

R -module and N is a G/H -graded R -module then HomG/H,R(M,N) has a subgroup

HOMR(M,N) endowed with a natural G/H -grading such that HomG/H,R(M,N) is a

G/H -graded R -module.

Recall that if K ≤ H ≤ G then there is a functor

U = UG/H
G/K : (G/K, R)-gr → (G/H, R)-gr

sending a G/K -graded R -module N to the G/H -graded R -module U(N) = N with

U(N)x =
⊕

y∈G/K
y⊆x

Ny.

The details on this functor and on its right adjoint are given in Section 2.

In Section 3 we recall the definition of HOMG/K,R(M,N) and we investigate its

relation to HOMG/H,R(M,N) in connection with the finite topology on HomR(M,N).

Our situation gives rise to two composite functor:

HOMG/H,R(M,−) ◦ UG/K
G/H : (G/K, R)-gr → (G/H, R)-gr,

and

UG/K
G/H ◦HOMG/K,R(M,−) : (G/K, R)-gr → (G/H,R)-gr.

Loosely speaking we ask when these functors are equal. Our main result in Section 4

generalize [GMN, Th. 3.4] and states that if H/K is infinite, then the functors are equal

if and only if M is a small R -module.

In this paper rings are always associative with unit element, and modules are unitary

and left. Besides the above mentioned papers, we refer to [NRV] for general facts on

graded rings and modules.

2. The grade forgetting functor and its adjoint

In this section we provide the details on the properties of the grade forgetting functor.

Let R =
⊕

g∈G Rg be a G -graded ring as in the introduction, and fix two subgroups

K ≤ H of G .

2.1. The grade forgetting functor

U = UG/K
G/H : (G/K, R)-gr → (G/H, R)-gr
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is defined as follows: for M =
⊕

x∈G/K Mx ∈ (G/K, R)-gr we have U(M) = M̄ =⊕
y∈G/H M̄y , where M̄ = M (as R -module), and M̄y =

⊕
x⊆y Mx for all y ∈ G/H ,

and obviously, U(f) = f for every morphism F : M → M ′ in (G/K, R)-gr.

2.2. There is functor in the opposite direction

F = FG/K
G/H : (G/H, R)-gr → (G/K, R)-gr

defined as follows: for N =
⊕

y∈G/H Ny ∈ (G/H, R)-gr we have

F(N) = Ñ =
⊕

x∈G/K

Ñx, Ñx = NxH ,

with multiplication by scalars given by rgñx = rgny ∈ Ngx where y = xH, ñx = ny ∈
Ny, rg ∈ Rg, g ∈ G .

If f : N → N ′ is morphism in (G/H, R)-gr, then f̃ = F(f) : Ñ → Ñ ′ is given by

f̃(ñx) = f(ny) ∈ Ñx = Ny , with y = xH and ñx = ny as above.

2.3. Lemma. With the above notation we have:

a) F = FG/K
G/H is a right adjoint of U = UG/K

G/H

b) If H/K is finite then F is also a left adjoint of U .

Proof. Let M ∈ (G/K, R)-gr and N ∈ (G/H, R)-gr. We define the functorial isomor-

phism

ΦM,N : Hom(G/H,R)-gr(U(M), N) → Hom(G/K,R)(M,F(N)),

by letting, for f : U(M) → N and mx ∈ Mx ,

ΦM,N (f)(mx) = f(mx) ∈ F(N)x = NxH .

Clearly, ΦM,N is a well defined group homomorphism.

Define further

ΨM,N : Hom(G/K,R)-gr(M,F(N)) → Hom(G/H,R)(U(M), N),

by letting, for g : M → F(N) and mx ∈ Mx = U(M)xH ,

ΨM,N (g)(mx) = g(mx) ∈ F(N)x = NxH .

Again ΨM,N is well defined and it is obvious that ΨM,N = Φ−1
M,N .

b) Assume that H/K is finite, and for M and N as above define

ΘN,M : Hom(G/K,R)-gr(F(N),M) → Hom(G/H,R)(N,U(M)),
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and for f : F(M) → N and ny ∈ Ny ,

ΘN,M (f)(ny) =
∑

x∈G/K
x⊆y

f(ñx),

with ñx = ny ∈ F(N)x .

Conversely, define

ΓN,M : Hom(G/H,R)-gr(N,U(M)) → Hom(G/K,R)(F(N),M),

by letting, for g : N → U(M) and ñx = ny ∈ F(N)x = NxH , y = xH

ΓN,M (g)(ñx) = g(nx)x,

where g(ñx) is the x-th component of g(ñx) ∈
⊕

x∈G/K Mx . Again it is easy to check

that ΓN,M = Θ−1
N,M .

2.4. Remark. a) The unit ζ of the adjoint pair (U ,F) is defined by

ζM : M → F(U(M)), ζM (mx) = mx ∈ F(U(M))x,

for all x ∈ G/K, mx ∈ Mx , the counit ξN given by

ξN : U(F(N)) → N, ξN (ñx) = ñx ∈ NxH ,

for all ñx = ny ∈ Ny , x ∈ G/K, y = xH

b) If H/K is finite then the unit ηN of the adjoint pair (F ,U) is defined by

ηN : N → U(F(N)), ηN (ny) =
∑

x∈G/K
x⊆y

ñx,

where ñx = ny ∈ Ny . The counit µM is defined by

µM : F(U(M)) → M, µM (x′mx) =

{
mx, if x = x′

0, if x 6= x′,

where x, x′ ∈ G/K, xH = x′H and x′mx ∈ F(U(M))x′ .

Observe that µM ◦ ζM = idM and ξN ◦ ηN =| H/K | idN .

c) Recall that if (Ni)i∈I is a family of objects of (G/H, R)-gr then the direct sum of

this family is
⊕

i∈I Ni with G/H -grading given by (
⊕

i∈I Ni)y =
⊕

i∈I(Ni)y . It follows

that (G/K, R)-gr is an AB3 category, and by its construction, it easily follows that

FG/K
G/H preserves direct sum.

2.5. An another functor which we will use is the ”suspension” functor:

SG/Hg : (G/H, R)-gr → (G/gH)-grdefined by SG/Hg(N) = N(g), g ∈ G,

where gH = gHg−1 and N(g) =
⊕

x∈G/gH N(G)x with N(g)x = Nxg .
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3. The finite topology on HOMG/K,R(M,N)

3.1. Let R be a G -graded ring, K a subgroup of G , M =
⊕

g∈G Mg ∈ R-gr, and

N =
⊕

x∈G/K Nx ∈ (G/K, R)-gr. By [M, 2.9], for each x ∈ G/K , the set

HOMG/K,R(M,N)x = {f ∈ HomR(M,N) | f(Mg) ⊆ Ngx for allg ∈ G}

is an additive subgroup of HomR(M,N). Moreover the sum

HOMG/K,R(M,N) =
∑

x∈G/K

HOMG/K,R(M,N)x

is direct. Remark that we also have the equality

HOMG/K,R(M,N) = Hom(G/xK,R)-gr(U
G/1
G/xK(M), N(x)),

where xK = xKx−1 , UG/1
G/xK : R-gr → (G/xK, R)-gr is the grade-forgetting functor and

N(x) is a object of (G/xK, R)-gr defined by

N(x) = N, N(x)y = Nxy for every y ∈ G/xK.

In particular, we have that EndR(M) contains a G -graded subring

ENDR(M) =
⊕
g∈G

ENDR(M)g,

with

ENDR(M)g = {f ∈ EndR(M) | f(Mh) ⊆ Mhg for all h ∈ G},

and HOMG/K,R(M,N) becomes a G/K -graded E -module where E = ENDR(M)opp .

The aim of this section is to establish the relationship between HOMG/K,R(M,N)

and HomR(M,N) in topological terms.

3.2. Let A be a Grothendieck category and let M,N be two object of A . Recall that

the finite topology on HomR(M,N) is defined by giving a basis for the filter of the

neighborhoods of 0 as follows:

F(0) = {V (0, X) | X ranges over the finitely generated subobjects of M},

where

V (0, X) = VM,N (0, X) = {f ∈ HomA(M,N)|X ⊆ Ker f}.

In this way, HomA(M,N) becomes a topological abelian group, which is actually a

subspace of NM endowed with the product topology, each of the components having the

discrete topology.
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If A is locally finitely generated (that is, it has a set of finitely generated genera-

tors or, equivalently, every object is the sum of its finitely generated subobject), then

HomA(M,N) is a complete Hausdorff topological space in the finite topology (see [GMN,

Section 2]). In particular this hold if A = R-mod. In this case, a filter of neighborhoods

of 0 is

{V (0, X) | X is a finite subset of M}.

Indeed, if V (0, {x1, . . . , xn}) is a neighborhood of 0 in the finite topology, defined in

this way, then V (0, {x1, . . . , xn}) = V (0, 〈x1, . . . , xn〉) is a neighborhood of 0 in the

finite topology; conversely, V (0, X) = V (0, {x1, . . . , xn}) where {x1, . . . , xn} generates

the submodule X of M .

3.3. Returning to the case when X ∈ R-gr and N ∈ (G/K, R)-gr we have that

HOMG/K,R(M,N) ⊆ HomR(M,N) is a topological space with the induced topology

and this is precisely the finite topology. Indeed, if

V ′(0, {x1, . . . , xn}) = {f ∈ HOMG/K,R(M,N) | f(x1) = . . . = f(xn)}

is a neighborhood of 0 in the finite topology on HOMG/K,R(M,N), then

V ′(0, {x1, . . . , xn}) = V (0, {x1, . . . , xn}) ∩HOMG/K,R(M,N),

where

V (0, {x1, . . . , xn}) = {f ∈ HomR(M,N) | f(x1) = . . . = f(xn)}.

Moreover, for every f ∈ HOMG/K,R(M,N) we have that

V ′(f, {x1, . . . , xn}) = f + V ′(0, {x1, . . . , xn}).

Thus HOMG/K,R(M,N) is a Hausdorff topological abelian group in the finite topology.

3.4. Recall that if X is a topological space, then the family {xi | i ∈ I} is called

summable to x ∈ X if for every neighborhood V of x there is a finite subset JV of I

such that for each finite subset J of I containing JV we have
∑

i∈J xi ∈ V . In this case

we write
∑

I∈I xi = x .

We claim that if X = HomR(M,N), then it is enough to consider only neighborhoods

of the type V (f, {m}) where f ∈ HomR(M,N) and m is a homogeneous element of

M . Indeed, let {fi | i ∈ I} be a family in HomR(M,N) with the property that for

every neighborhood V (f,mg) with mg ∈ Mg , there is a subset J0 of I such that

for every finite subset J of I containing J0 we have
∑

i∈J fi ∈ V (f,mg). Now let

m = m1+. . .+mn ∈ M where m1, . . . , mn are homogeneous and let J1, . . . , Jn be finite
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subsets such that for every j ∈ {1, . . . , } and for every finite subset J of I with Jj ∈ J

we have
∑

i∈J fi ∈ V (f,mj), that is
∑

i∈J fI(mj) = f(mj). If we let J0 =
⋃n

j=1 Jj ,

then (
∑

i∈J fi)(mj) = f(mj), hence
∑

i∈J fi ∈ V (f,m) for every finite subset J of

I containing J0 . Finally let V = V (f, {m1, . . . , mk}) be a neighborhood of f . Then

there are the finite subsets J ′1, . . . , J ′k , of I such that for every l ∈ {1, . . . , k} and for

every finite subset J of I containing J ′l we have (
∑

i∈J fi)(ml) = f(ml). If we set

JV =
⋃k

l=1 J ′l , then for every finite subset J of I containing JV we have
∑

i∈J fi ∈ V ,

hence
∑

i∈I fi = f , and the claim is proved.

The goal of this section is to show that HomR(M,N) is the completion of its subgroup

HOMG/H,R(M,N), in the finite topology and to and to examine the relationship between

HOMG/H,R(M,N) and HOMG/K,R(M,N), where K ≤ H are subgroups of G .

3.5. Let f ∈ HomR(M,N), g ∈ G and x ∈ G/H . We define the abelian groups

homomorphism

fx : M =
⊕
g∈G

Mg → N

with components

fg
x : Mg → N, fg

x (mg) = f(mg)gx for all mg ∈ Mg,

where f(mg)gx is the homogeneous component of f(mg) ∈ N =
⊕

y∈G/H Ny belonging

to Ngx.

If rh ∈ Rh, h ∈ G, then rhmg ∈ Mhg , so

fx(rhmg) = fhg
x (rhmg) = f(rhmg)hgx = (rhf(mg))hgx.

Since every element of N has a unique decomposition into homogeneous components, it

follows that fx(rhmg) = rhfx(mg). Consequently, fx is R -linear. Further, by definition

we have that fx ∈ HOMG/H,R(M,N)x .

Now we may state the main result of this section.

3.6. Theorem. If M ∈ R-gr and N ∈ (G/H, R)-gr , then with the above notations the

following statements hold:

a) The family {fx | x ∈ G/H} is summable to f in the finite topology, and the

components fx are uniquely determined by the properties fx ∈ HOMG/H,R(M,N)x and∑
x∈G/H fx = f .

b) HomR(M,N) is the completion of HOMG/H,R(M,N) in the finite topology.

Proof. a) By (3.4) we may restrict to the case of neighborhoods of the form V (f,mg)

where mg ∈ Mg for some g ∈ G . Let f(mg) = nx1 + . . . + nxk
with nxj

∈ Nxj
be the
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decomposition of f(mg) into homogeneous components. We set J0 = {x1, . . . xk} . Then

J0 is a finite subset of G/H and f(mg) = (
∑

x∈J0
fx(mg), hence

∑
x∈J0

fx ∈ V (f,mg).

Since for each x ∈ G/K \ J0 we have f(mg) = 0, it follows that for every finite subset

J of I containing J0 , f(mg) = (
∑

x∈J fx(mg). Therefore
∑

x∈J fx ∈ V (f,mg), and

consequently,
∑

x∈G/H fx = f in the finite topology.

For the uniqueness, we assume that gx | x ∈ G/H is another family of morphisms such

that gx ∈ HOMG/H,R(M,N)x and
∑

x∈G/H gx = f . If fx0 6= gx0 for some x0 ∈ G/H ,

then there exits mg ∈ Mg such that fx0 6= gx0 . We consider the neighborhood V (f,mg)

of f in the finite topology. Then we may find the finite subset J0 ∈ Pf (G/H) (where

Pf (G/H) denotes the set of all finite subsets of G/H ) with the property that for every

J ∈ Pf (G/H) for which J0 ⊆ J we have
∑

x∈G/H fx ∈ V (f,mg) and
∑

x∈G/H gx ∈
V (f,mg). If we set J = J0 ∪ {x0} , then J ∈ Pf (G/H) and (

∑
x∈J fx(mg) = f(mg) =

(
∑

x∈J gx(mg). By the uniqueness of the decomposition into homogeneous elements it

follows that fx0(mg) = gx0(mg).

b) Let f be an element of HomR(M,N). With the above notations, for some J ∈
Pf (G/H) we have

∑
x∈J

fx ∈
⊕

x∈G/H

HOMG/H,R(M,N)x = HOMG/H,R(M,N),

and a) implies that HOMG/H,R(M,N) ∩ V (f,m) 6= 0. Hence HOMG/H,R(M,N) is

dense in HomR(M,N) in the finite topology. But HomR(M,N) is a complete Hausdorff

topological space in the finite topology, hence it is the completion of HOMG/H,R(M,N).

3.7. Corollary. If K ≤ H are subgroups of G , then HOMG/K,R(M,N) is dense in

HOMG/H,R(M,N) in the finite topology.

3.9. Proposition. With the notations from the prop. 3.8., if H/K is a finite set then

HOMG/H,R(M,N) = HOMG/K,R(M,N)

.

Proof. For begin let f ∈ HOMG/H,R(M,N)gH and {h1, . . . , hn} = [H/K] be a

transversely for H/K . Since H =
⋃

h∈[H/K] hK we have, for a fixed gH ∈ G/H ,

gH =
⋃

h∈[H/K] ghK = gh1K∪ . . .∪ghnK , and G/K = {ghK | g ∈ [G/H], h ∈ [H/K]} .

Thus

N =
⊕

x∈G/K

Nx =
⊕

g∈[G/K]

(
⊕

h∈[H/K]

NghK) =
⊕

g∈[G/H]

(
n⊕

i=1

NghiK) =
n⊕

i=1

(
⊕

g∈[G/H]

NghiK).
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We consider the canonical projections pn : N →
⊕

g∈[G/H] NghiK and the composition

pn◦f : M →
⊕

g∈[G/H] NghiK . Since f(Mk) ⊆ NkgH and for each kH ∈ G/H there exist

a unique i ∈ {1, . . . , n} such that ghiK ⊆ kgH . Thus f may be write as
∑n

i=1(f ◦ pn)

with f ◦ pn ∈ HOMG/K,R(M,N). Now the general case when f ∈ HOMG/H,R(M,N)

follow from the fact that f may be write as a finite sum of morfisms belonging to

HOMG/H,R(M,N)gH with gH ranges over G/H .

4. Small graded modules

4.1. Let A be an abelian category satisfying AB3, and let M be an object of A . M is

called small if the functor HomA(M,−) : A → Ab preserves direct sum or, equivalently,

preserves denumerable direct sum [S, p. 134]. This is equivalent to the fact that any

morphism f : M →
⊕

i∈N Xi factors trough a finite coproduct
⊕

i∈F Xi , where F a

finite subset of N [Mitchell, pag.74]. More generally we say that M is N -small if

HomA(M,−) : A → Ab preserves (denumerable) direct sum of copies of N (for N = M

one gets the concept of a self-small object). We will use the following results.

4.2. Proposition. [GMN, Proposition 1.1] Let A be an AB3 category and M an object

of A . Then M is small if and only if M is N -small for every object N of A .

4.4. Theorem. [GMN, th. 1.3.] Let A and B be AB3 categories, M ∈ A and N ∈ B .

Let U : A → B be a left adjoint of the functor F : B → A and assume that F preserves

direct sum. Then the following assertion hold:

a) M is F(N)-small in A if and only if U(M) is N -small in B .

b) If M is small in A then U(M) is small in B .

4.5. The connection between small objects and finite topology is as follows (cf. [GMN,

pp. 3176-3177]). If the finite topology of HomA(M,N) is discrete, where A is a Grothen-

dieck category, then M is N -small. The converse is true if we assume in addition that A
being locally finitely generated and the finite topology of HomA(M,N) being first count-

able. If A is a locally finitely generated Grothendieck category and M ∈ A is countably

generated, then M is N -small if and only if the finite topology of HomA(M,N) is

discrete.

Now we return to our context, and let

U = UG/K
G/H : (G/K, R)-gr → (G/H, R)-gr

be the grade forgetting functor introduced in Section 2 and

F = FG/K
G/H : (G/H, R) → (G/K, R)-gr

its right adjoint.
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4.6. Proposition. Let R be a G-graded ring and K ≤ H subgroups of G . If M and

N are two objects of (G/K, R)-gr , then the following statements hold:

a) M is small in (G/H, R)-gr if and only if M is small in (G/K, R)-gr .

b) M is U(N)-small in (G/H, R)-gr if and only if M is F(U(N))-small in

(G/K, R)-gr .

Proof. a) The necessity is obvious since we have that Hom(G/K,R)-gr(M,N) is a subset of

Hom(G/H,R)-gr(M,N) for every N ∈ (G/K, R)-gr. The sufficiency follows by Theorem

4.4.b), applied to the functor U whose right adjoint F preserves direct sum.

b) By Theorem 4.2.a), we have that M = U(M) is U(N)-small in (G/H, R)-gr if and

only if M is F(U(N))-small in (G/K, R)-gr.

4.7. Remarks. a) If M is a G -graded R -module, then M may be regarded as an object

of (G/K, R)-gr via the functor

UG/1
G/K : R-gr → (G/K, R)-gr.

Then statement a) of the above becomes:

The object M of R-gr is UG/K
G/H (N)-small in (G/H, R)-gr if and only if M is

F(U(N))-small in (G/K, R)-gr .

? b) If (U ,F) is the pair of adjoint functors defined as above and if N ∈ (G/K, R)-gr

then we have:

F(U(N)) =
⊕

gK∈G/K

(
⊕

y∈gH/gK

N(g)y) =
⊕

gK∈G/K

(
⊕

hgK∈gH/gK

NhgK)

where N(g) is the g -th suspension of N and gK = gKg−1 [cf. M]

4.8. Lemma. c. Let M ∈ R-gr and N ∈ (G/H, R)-gr . If M is N -small in R-mod

then

HOMG/H,R(M,N) = HomR(M,N)

Proof.. As in the section 3 we associate to each R -morphism f ∈ HomR(M,N) and

each x = gH ∈ G/H a morphism fx ∈ HOMG/H,R(M,N)x = Hom(G/gH,R)-gr(M,N(g))

defined by fx(mh) = fgH(Mh) = f(mh)hgH for every h ∈ G, mh ∈ Mh . Conform

th.3.??????. {fx | x ∈ G/H} is summable to f in the finite topology i.e.
∑

x∈G/H fx =

f . Since every f(m) has a unique (finite!) decomposition in homogeneous component,

it follow that supp{fx(m) | x ∈ G/H} is finite. Thus we can define a mapping g : M →⊕
x∈G/H Nx , where Nx ∼= N , by g(m) = (fx(m))x∈G/H for every m ∈ M . Obviously,

g is an R -morphism and since M is N -small in R-mod, there exists x1, . . . , xn ∈ G/H

such that g(M) ⊆
⊕n

i=1 Nxi . Therefore fx = 0 for x ∈ G/H\{x1, . . . , xn} and f =∑n
i=1 fxi

. This show that f ∈ HomG/H,R(M,N).
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4.9. Corollary. Let R be a G-graded ring and K ≤ H ≤ G . Let M ∈ R-gr and

N ∈ (G/K, R)-gr . If M is N -small in R-mod then

HOMG/H,R(M,N) = HOMG/K,R(M,N)

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, K ≤ H ≤ G two subgroups such that

H/K is infinite and K is normal in G . Let M ∈ R-gr . Then the following statements

are equivalent:

(i) M is small in (G/K, R)-gr (R-mod, R-gr, (G/H,R)-gr)

(ii)HOMG/H,R(M,N) = HOMG/K,R(M,N) for every N ∈ (G/K, R)-gr

Proof. (i)⇒(ii) From prop.4.1. and corollary 4.7.

(ii)⇒(i) Let M =
⊕

g∈G Mg ∈ R-gr such that HOMG/H,R(M,N) = HomR(M,N) for

every N ∈ (G/H, R)-gr. Since K E G we have for every g ∈ G that gK = gKg−1 = K

and the g -th suspension of N noted N(g) belongs to (G/gK, R)-gr = (G/K, R)-gr. The

G/K -grader of N(h) is give as N(h) =
⊕

g∈[G/K] N(h)gK with N(h)gK = NghK and

of
⊕

h∈[H/K] N(h) as

⊕
h∈[H/K]

N(h) =
⊕

g∈[G/K]

(
⊕

h∈[H/K]

NghK)

Let u ∈ Hom(G/K,R)-gr(M,
⊕

h∈[H/K] N(h) where [H/K] ⊆ H is a transversely for

H/K (as we have seen
⊕

h∈[H/K] N(h) ∈ (G/K, R)-gr). Since every n ∈
⊕

h∈[H/K] N(h)

has a unique finite decomposition n = n(h1)+. . .+n(hk) with n(hj) ∈ N(hj), 1 ≤ j ≤ k ,

we may define a R -morphism

t :
⊕

h∈[H/K]

N(h) → Nbyt(n) =
k∑

i=1

n(hj) =
∑

h∈[H/K

n(h).

In fact t is the R -morphism
⊕

h∈[H/K] N(h) → N with all component 1N . Moreover

t(
⊕

h∈[H/K]

N(h)gK) = t(
⊕

h∈[H/K]

NghK) ⊆ NgH

, where NgH is the homogeneous component of N see as G/H -graded. This show that

t ∈ HOMG/H,R(M,
⊕

h∈[H/K] N(h)). We set ū = t ◦ u : M → N . Then

ū ∈ HOMG/H,R(M,N) = HOMG/K,R(M,N) =
⊕

g∈[G/K]

HOMG/K,R(M,N)gK ,
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and so there exists g1K, . . . , gsK ∈ G/K and ugi
∈ HOMG/K,R(M,N)giK =

Hom(G/K,R)-gr(M,N(gi)), 1 ≤ i ≤ s such that ū =
∑s

i=1 ugi
. Thus ū(Mg) ⊆

N(g1)gK + . . . N(gs)gK = Ngg1K + . . . + NggsK for each g ∈ G . It follows that if

mg ∈ Mg for some g ∈ G and u(mg) = (nh)x∈[H/K] , with nh ∈ N(h)gK = NghK then

ū(mg) =
∑

h∈[H/K]

n(h) ∈ Ngg1K + . . . + NggsK .

This shows that n(h) = 0 for each h ∈ [H/K]\{gg1, . . . , ggs} . Consequently

Im u ⊆
⊕n

i=1 N(hi) with n ≤ s and this inclusion hold for an arbitrary morphism

u ∈ Hom(G/K,R)-gr(M,N).

Let now f : M →
⊕

i∈N Xi be a morphism in (G/K, R)-gr. Let A =
⊕

i ∈ NXi

and N =
⊕

g∈[G/K] A(g) ∈ (G/K, R)-gr. Then N has the property that N(g) ∼= N in

(G/K, R)-gr for each g ∈ [G/K] , in particular, for each g = h ∈ [H/K] . Since H/K is

infinite, we may assume that N is a subset of H/K and we obtain a monomorphism in

(G/K, R)-gr:

v : N (N) →
⊕

h∈[H/K]

N(h).

We note by σ : A → N and ρi : Xi → A the canonical injections. Since (G/K, R)-gr is

AB3, the morphism

w =
⊕
i∈N

(σ ◦ ρi) : A → N (N)

is a monomorphism. We get a morphism in (G/K, R)-gr: v◦w◦f : M →
⊕

h∈[H/K] N(h).

As we have seen above, Im(v ◦ w ◦ f) ⊆
⊕n

i=1 N (hi) for some elements h1, . . . , hn ∈
[H/K] . Consequently Im f ⊆

⊕
i ∈ FXi , where F = N ∩ {h1, . . . , hn} and hence we

see that M is small in (G/K, R)-gr.

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, H ≤ G a subgroup such that G/H is

infinite and M ∈ R-gr . Then the following statements are equivalent:

(i) M is small in (G/H, R)-gr (R-mod, R-gr)]

(ii) HOMG/H,R(M,N) = HomR(M,N) for every N ∈ (G/H, R)-gr.

Proof. (i)⇒(ii) from prop.4.1. and lemma 4.5.

(ii)⇒(i) Let M =
⊕

g∈G Mg ∈ R-gr such that HOMG/H,R(M,N) = HomR(M,N)

for every N ∈ (G/H, R)-gr. Let u ∈ Hom(G/H,R)-gr(M,
⊕

x∈G/H Nx) where Nx ∼= N ,

hence u(Mg) ⊆
⊕

x∈G/H(Nx)gH for every g ∈ G . Since every n ∈
⊕

x∈G/H Nx has a

unique finite decomposition n = nx1 + . . . + nxk
with nxj

∈ Nxj , 1 ≤ j ≤ k , we may
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define a mapping

t :
⊕

x∈G/H

Nx → Nbyt(n) =
k∑

i=1

nxj
=

∑
x∈G/H

nx.

Obviously t is a R -morphism. We set ū = t ◦ u : M → N . Then

ū ∈ HomR(M,N) = HOMG/H,R(M,N) =
⊕

y∈G/H

HOMG/H,R(M,N)y,

and so there exists y1, . . . , ys ∈ G/H and uyi
∈ HOMG/H,R(M,N)yi

, 1 ≤ i ≤ s such

that ū =
∑s

i=1 uyi . Thus ū(Mg) ⊆ Ngy1 + . . . + Ngys for each g ∈ G . It follows that if

mh ∈ Mh for some h ∈ G and u(mh) = (nx)x∈G/H , with nx ∈ (Nx)hH then

ū(mh) =
∑

x∈G/H

nx ∈ Ny1 + . . . + Nys

and Nyi
= Nxi

h H , for some xi ∈ G/H, 1 ≤ i ≤ s . This show that nx = 0 for each

x ∈ G/H\{x1, . . . , xs} . Consequently Im u ⊆
⊕s

i=1 Nxi and this inclusion holds for an

arbitrary morphism u ∈ Hom(G/H,R)-gr(M,N).

Now let f : M →
⊕

i ∈ NXi be a morphism in (G/H, R)-gr. Let A =
⊕

i ∈ NXi

and N =
⊕

x∈G/H Ax ∈ (G/H,R)-gr with Ax ∼= A . Since G/H is infinite, we may

assume that N is a subset of G/H and we obtain a monomorphism in (G/H, R)-gr:

v : N(N) →
⊕

x∈G/H

N.

We note by σ : A → N and ρi : Xi → A the canonical injections. Since (G/H, R)-gr is

AB3, the morphism

w =
⊕
i∈N

(σ ◦ ρi) : A → NN

is a monomorphism. We get a morphism in (G/H, R)-gr: v ◦ w ◦ f : M →
⊕

x∈G/H Nx

with Nx ∼= N . As we have seen above, Im(v ◦ w ◦ f) ⊆
⊕s

i=1 Nxi for some elements

x1, . . . , xs ∈ G/H . Consequently Im f ⊆
⊕

i ∈ FXi , where F = N ∩ {x1, . . . , xs} and

hence we see that M is small in (G/H, R)-gr.

4.11. Corollary. Let R be a G-graded ring and K ≤ H ≤ G two subgroups such that

H/K is infinite. Then the following statements are equivalent:

(i) M is small in (G/H, R)-gr (R-mod, R-gr).

(ii) HOMG/H,R(M,N) = HOMG/K,R(M,N) for every N ∈ (G/K, R)-gr .

—————————————-

2.5. An another functor which we will use is the ”suspension” functor:

SG/Hg : (G/H, R)-gr → (G/gH)-grdefined by SG/Hg(N) = N(g), g ∈ G,

where gH = gHg−1 and N(g) =
⊕

x∈G/gH N(G)x with N(g)x = Nxg .

——————————————————————-
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3.6. Theorem. Let R be a G-graded ring and H ≤ G . Let M ∈ R-gr and N ∈
(G/H, R)-gr . With the above notations we have:

(i) The family {fx | x ∈ G/H} is summable to f in the finite topology with fx

uniquely determined with the properties fx ∈ HOMG/H,R(M,N)x and
∑

x∈G/H fx = f .

(ii) HomR(M,N) is the completion of HOMG/H,R(M,N) in the finite topology.

Proof. (i) We restrict at neighborhoods of the form V (f,mg) with mg ∈ Mg for some

g ∈ G , a homogeneous element. Lte f(mg) = nx1 + . . . + nxk
with nxj

∈ Nxj
the

decomposition of f(mg) in the homogeneous components. We set J0 = {x1, . . . xk} .

Then J0 is a finite subset of G/H and f(mg) = (
∑

x∈J0
fx(mg) hence

∑
x∈J0

fx ∈
V (f,mg). Since for each x ∈ G/K\J0 we have f(mg) = 0, it follows that, for every finite

subset J of I , containing J0 , f(mg) = (
∑

x∈J fx(mg), therefore
∑

x∈J fx ∈ V (f,mg).

Consequently,
∑

x∈G/H fx = f in the finite topology.

For the uniqueness we assume that gx | x ∈ G/H is another family of morphisms such

that gx ∈ HOMG/H,R(M,N)x and
∑

x∈G/H gx = f . If fx0 6= gx0 for some x0 ∈ G/H

then there exit mg ∈ Mg such that fx0 6= gx0 . We consider the neighborhood V (f,mg)

of f in the finite topology. Then we may find J0 ∈ Pf (G/H) where Pf (G/H) is the

set of all finite subsets of G/H , whiththe property that for every J ∈ Pf (G/H) for

which J0 ∈ J we have
∑

x∈G/H fx ∈ V (f,mg) and
∑

x∈G/H gx ∈ V (f,mg). We set

J = J0 ∪ {x0} . Then J ∈ Pf (G/H) and (
∑

x∈J fx(mg) = f(mg) = (
∑

x∈J gx(mg)

and from the uniqueness of the decomposition in homogeneous elements it follows that

fx0(mg) = gx0(mg), which is a contradiction.

(ii) Given f belonging to HomR(M,N) Whit the above notations, for some J ∈
Pf (G/H) we have

∑
x∈J

fx ∈
⊕

x∈G/H

HOMG/H,R(M,N)x = HOMG/H,R(M,N)

and the result (i) implies HOMG/H,R(M,N) ∩ V (f,m) 6= 0. Hence HOMG/H,R(M <

N) is dense in HomR(M,N) on the finite topology. But HomR(M,N) is a complete

Hausdorff topological space in the finite topology, consequently, it is the completion of

|HOMG/H,R(M,N).

3.7. Remark. If 1 = H ≤ G then (G/1, R)-gr = R-gr and and the above theorem is just

the theorem 1.2. of [GN].

3.8. Corollary. If R is G-graded ring and K ≤ H ≤ G are two subgroups then

HOMG/K,R(M,N) is dense in HOMG/H,R(M,N) on the finite topology.
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3.9. Proposition. Let R be a G-graded ring, M ∈ R-gr , and N ∈ (G/K, R)-gr where

K ≤ H ≤ G are two subgroups. Thus each f ∈ HOMG/H,R(M,N)gH , (g ∈ G) may be

write as f =
∑

z∈gH/gK fz where fz ∈ HOMgH/gK,R(M,N)z

Proof. Let

f ∈ HOMG/H,R(M,N)gH = Hom(G/gH,R)-gr(M,N(g)) = HOMG/gH,R(M,N)gH

Since f ∈ HomR(M,N) th. 3.6. give the relation f =
∑

h∈[G/gK] fhgK where fhgK ∈
HOMG/gK,R(M,N) and [G/gK] ⊆ G is a transversely for G/gK . Moreover, we have

for each k ∈ G : f(Mk) ⊆ U(N(g))kH =
⊕

x∈G/gK N(g)x and fhgK ⊆ NkhgK . Since

HOMG/gH,R(M,N) is a Hausdorff topological space and f =
∑

h∈[G/gK] fhgK it follows

that NkhgK ⊆
⊕

x∈G/gK N(g)x . Thus fhgK(Mk) 6=) implies khgK ⊆ kgH

3.10. Corollary. With the notations from the prop. 3.8., if H/K is a finite set then

HOMG/H,R(M,N) = HOMG/K,R(M,N)

—————————————————————–

The main result of this section is the following:

4.8. Theorem. Let R be a G-graded ring, K ≤ H ≤ G two subgroups such that H/K

is infinite and K is normal in G . Let M ∈ R-gr . Then the following statements are

equivalent:

(i) M is small in (G/K, R)-gr (R-mod, R-gr, (G/H, R)-gr)

(ii)HOMG/H,R(M,N) = HOMG/K,R(M,N) for every N ∈ (G/K, R)-gr

Proof. (i)⇒(ii) From prop.4.1. and corollary 4.7.

(ii)⇒(i) Let M =
⊕

g∈G Mg ∈ R-gr such that HOMG/H,R(M,N) = HomR(M,N) for

every N ∈ (G/H, R)-gr. Since K E G we have for every g ∈ G that gK = gKg−1 = K

and the g -th suspension of N noted N(g) belongs to (G/gK, R)-gr = (G/K, R)-gr. The

G/K -grader of N(h) is give as N(h) =
⊕

g∈[G/K] N(h)gK with N(h)gK = NghK and

of
⊕

h∈[H/K] N(h) as

⊕
h∈[H/K]

N(h) =
⊕

g∈[G/K]

(
⊕

h∈[H/K]

NghK)

Let u ∈ Hom(G/K,R)-gr(M,
⊕

h∈[H/K] N(h) where [H/K] ⊆ H is a transversely for

H/K (as we have seen
⊕

h∈[H/K] N(h) ∈ (G/K, R)-gr). Since every n ∈
⊕

h∈[H/K] N(h)
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has a unique finite decomposition n = n(h1)+. . .+n(hk) with n(hj) ∈ N(hj), 1 ≤ j ≤ k ,

we may define a R -morphism

t :
⊕

h∈[H/K]

N(h) → Nbyt(n) =
k∑

i=1

n(hj) =
∑

h∈[H/K

n(h).

In fact t is the R -morphism
⊕

h∈[H/K] N(h) → N with all component 1N . Moreover

t(
⊕

h∈[H/K]

N(h)gK) = t(
⊕

h∈[H/K]

NghK) ⊆ NgH

, where NgH is the homogeneous component of N see as G/H -graded. This show that

t ∈ HOMG/H,R(M,
⊕

h∈[H/K] N(h)). We set ū = t ◦ u : M → N . Then

ū ∈ HOMG/H,R(M,N) = HOMG/K,R(M,N) =
⊕

g∈[G/K]

HOMG/K,R(M,N)gK ,

and so there exists g1K, . . . , gsK ∈ G/K and ugi
∈ HOMG/K,R(M,N)giK =

Hom(G/K,R)-gr(M,N(gi)), 1 ≤ i ≤ s such that ū =
∑s

i=1 ugi
. Thus ū(Mg) ⊆

N(g1)gK + . . . N(gs)gK = Ngg1K + . . . + NggsK for each g ∈ G . It follows that if

mg ∈ Mg for some g ∈ G and u(mg) = (nh)x∈[H/K] , with nh ∈ N(h)gK = NghK then

ū(mg) =
∑

h∈[H/K]

n(h) ∈ Ngg1K + . . . + NggsK .

This shows that n(h) = 0 for each h ∈ [H/K]\{gg1, . . . , ggs} . Consequently

Im u ⊆
⊕n

i=1 N(hi) with n ≤ s and this inclusion hold for an arbitrary morphism

u ∈ Hom(G/K,R)-gr(M,N).

Let now f : M →
⊕

i∈N Xi be a morphism in (G/K, R)-gr. Let A =
⊕

i ∈ NXi

and N =
⊕

g∈[G/K] A(g) ∈ (G/K, R)-gr. Then N has the property that N(g) ∼= N in

(G/K, R)-gr for each g ∈ [G/K] , in particular, for each g = h ∈ [H/K] . Since H/K is

infinite, we may assume that N is a subset of H/K and we obtain a monomorphism in

(G/K, R)-gr:

v : N (N) →
⊕

h∈[H/K]

N(h).

We note by σ : A → N and ρi : Xi → A the canonical injections. Since (G/K, R)-gr is

AB3, the morphism

w =
⊕
i∈N

(σ ◦ ρi) : A → N (N)

is a monomorphism. We get a morphism in (G/K, R)-gr: v◦w◦f : M →
⊕

h∈[H/K] N(h).

As we have seen above, Im(v ◦ w ◦ f) ⊆
⊕n

i=1 N (hi) for some elements h1, . . . , hn ∈
[H/K] . Consequently Im f ⊆

⊕
i ∈ FXi , where F = N ∩ {h1, . . . , hn} and hence we

see that M is small in (G/K, R)-gr.
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3.9. Proposition. With the notations from the prop. 3.8., if H/K is a finite set then

HOMG/H,R(M,N) = HOMG/K,R(M,N)

.

Proof. For begin let f ∈ HOMG/H,R(M,N)gH and {h1, . . . , hn} = [H/K] be a

transversely for H/K . Since H =
⋃

h∈[H/K] hK we have, for a fixed gH ∈ G/H ,

gH =
⋃

h∈[H/K] ghK = gh1K∪ . . .∪ghnK , and G/K = {ghK | g ∈ [G/H], h ∈ [H/K]} .

Thus

N =
⊕

x∈G/K

Nx =
⊕

g∈[G/K]

(
⊕

h∈[H/K]

NghK) =
⊕

g∈[G/H]

(
n⊕

i=1

NghiK) =
n⊕

i=1

(
⊕

g∈[G/H]

NghiK).

We consider the canonical projections pn : N →
⊕

g∈[G/H] NghiK and the composition

pn◦f : M →
⊕

g∈[G/H] NghiK . Since f(Mk) ⊆ NkgH and for each kH ∈ G/H there exist

a unique i ∈ {1, . . . , n} such that ghiK ⊆ kgH . Thus f may be write as
∑n

i=1(f ◦ pn)

with f ◦ pn ∈ HOMG/K,R(M,N). Now the general case when f ∈ HOMG/H,R(M,N)

follow from the fact that f may be write as a finite sum of morfisms belonging to

HOMG/H,R(M,N)gH with gH ranges over G/H .
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15. C. Năstăsescu, L. Shaoxue and F. van Oystaeyen, Graded modules over G -sets II, Math. Z. 207
(1991), 341-358.
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