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1. INTRODUCTION

Let G be a group and R = P o Ry a G-graded ring. If M = P, 5 M, and
N = @,cq Ny are G-graded rings then E.C. Dade showed in [D1] that the group
Homp(M,N) has a subgroup denoted HOMpg (M, N) which can be endowed with a
natural G-grading:

HOMR(M, N)g = {f S HOIHR(M, N) ‘ f(Mh) - Nhg for all h G}
= Homp_ 4 (M, N(g)),

where R-gr denotes the category of (G-graded R-modules and grade preserving R-
morphisms and N(g) is the G graded module, called the g-suspension of N, with
N(g) =N and N(g), = Npy for all h e G.

In particular, ENDg(M) = HOMg(M, M) is a G-graded ring and HOMpg (M, N)
becomes a G-graded E-module, where £ = ENDr(M )PP (with grading given by E, =
ENDg(M)g4-1).

The natural problem which arises is to give condition under which HOMgz(M, N) =
Homp(M,N). Some condition were established by Dade in [D1] and a general an-
swer was given by Gémez-Pardo, Militaru and Nastasescu in [GMN], using among other
things the fact, proved in [GMN, Theorem 1.2], that Hompg (M, N) is the completion of
HOMpg(M, N) in the finite topology.

Dade also introduced in [D2] a useful generalization of G-graded modules, namely
modules graded by G-sets. We shall be interested only in modules graded by transi-
tive G-sets, so let H be a subgroup of G and denote by G/H the set {gH | g € G}
of left cosets of H in G. An R-module N is G/H if N = @,cq /g No (as additive
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subgroups) and RyN, C N, for all ¢ € G and = € G/H. Denote by (G/H, R)-gr the
category of G/H -graded R-modules and grade preserving R-morphisms. Observe that
(G/G, R)-gr=R-mod, while (G/1, R)-gr = R-gr. Moreover, (G/H, R)-gr is a Grothen-
dieck category and it was investigated in detail in [NRV] and [NSV].

The construction of “HOM” was generalized in [M, section2]. If M is a G-graded
R-module and N is a G/H-graded R-module then Homg, g r(M, N) has a subgroup
HOMEg(M, N) endowed with a natural G/H -grading such that Homg,y (M, N) is a
G/H -graded R-module.

Recall that if K < H < G then there is a functor

U=Ug/: (G/K,R)-gr — (G/H, R)-gr

sending a G/K -graded R-module N to the G/H-graded R-module U(N) = N with

The details on this functor and on its right adjoint are given in Section 2.
In Section 3 we recall the definition of HOM¢,k r(M,N) and we investigate its
relation to HOMg, g,r(M, N) in connection with the finite topology on Homp (M, N).

Our situation gives rise to two composite functor:

HOMe, i r(M, =) oUS )y  (G/K, R)-gr — (G/H, R)-gr,

and

Uy o HOMg)x r(M, —): (G/K, R)-gr — (G/H, R)-gr.

Loosely speaking we ask when these functors are equal. Our main result in Section 4
generalize [GMN, Th. 3.4] and states that if H/K is infinite, then the functors are equal
if and only if M is a small R-module.

In this paper rings are always associative with unit element, and modules are unitary
and left. Besides the above mentioned papers, we refer to [NRV]| for general facts on

graded rings and modules.

2. THE GRADE FORGETTING FUNCTOR AND ITS ADJOINT

In this section we provide the details on the properties of the grade forgetting functor.
Let R=6p
K < H of GG.

gec Bg be a G-graded ring as in the introduction, and fix two subgroups

2.1. The grade forgetting functor

U=UG);: (G/K, R)-gr — (G/H, R)-gr
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is defined as follows: for M = @,cq/,x Mz € (G/K, R)-gr we have U(M) = M =
Dyec/n M, , where M = M (as R-module), and M, = D.c, M, forall y € G/H,
and obviously, U(f) = f for every morphism F: M — M’ in (G/K, R)-gr.

2.2. There is functor in the opposite direction
F = fg//g: (G/H,R)-gr — (G/K, R)-gr

defined as follows: for N =@, cq/ iy Ny € (G/H, R)-gr we have

ze€G/K

with multiplication by scalars given by ryn, = ryn, € Nyrv where y = vH, n, = n, €
Ny, rq € Ry, g€G.
If f: N — N’ is morphism in (G/H,R)-gr, then f = F(f): N — N’ is given by

f(7z) = f(ny) € N, = N, with y = H and 7, = n, as above.

2.3. Lemma. With the above notation we have:

a) F = ]—“g//g is a right adjoint of U = Ug//g

b) If H/K is finite then F is also a left adjoint of U .

Proof. Let M € (G/K,R)-gr and N € (G/H, R)-gr. We define the functorial isomor-
phism
@y v Homgym, py-ge(U(M), N) — Homg,k ry(M, F(N)),

by letting, for f: U(M) — N and m, € M,,

(I)M7N(f)(ma:) = f(m:r) S ]:(N)a: = INgH-

Clearly, ® s,y is a well defined group homomorphism.
Define further

Vv Homg) i ry-ge (M, F(N)) — Homg/m r)y(U(M), N),
by letting, for g: M — F(N) and m, € M, =U(M ),z ,
Y n(9)(me) = g(ma) € F(N)e = Nun.

Again W,/ n is well defined and it is obvious that Wy, v = CIDJT; N-
b) Assume that H/K is finite, and for M and N as above define

On,n: Homg) i ry-ge(F(N), M) — Homq,pm,r) (N, U(M)),
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and for f: F(M) — N and n, € N,

Onm(H)ny) = > fli),

z€G/K
zCy

with iy =n, € F(N)a,.

Conversely, define
Uy, Homg a,ry-ge (N, U(M)) — Hom g,k r)(F(N), M),
by letting, for g: N — U(M) and fiy =ny € F(N)y = Ny, y =xH
I'n(9)(ia) = g(na)a,

where g(71;) is the z-th component of g(7z) € D,/ Mo Again it is easy to check

that Iy = Oy,
2.4. Remark. a) The unit ¢ of the adjoint pair (U, F) is defined by
Cv: M — FUM)), Cu(me) =me € FUM))a,
for all x € G/K, m, € M,, the counit {y given by
En:UF(N)) = N, &En(ng) =1y € Nom,

for all n, =n, € Ny, x € G/K, y=aH
b) If H/K is finite then the unit ny of the adjoint pair (F,U) is defined by

nv: N —UFN)), nn(ny) = Nz,
where n, =n, € N,. The counit us is defined by

s FUM)) — M, w/x:
s FUOD) — M, s ) {& -

where z,2/ € G/K, tH = z'H and “'m, € FUM)), .
Observe that ppy o (yr = idy and En ony =| H/K | idy .
c¢) Recall that if (N;)ies is a family of objects of (G/H, R)-gr then the direct sum of
this family is €,.; V; with G/H -grading given by (B,.; Ni)y = B,c;(Ni)y - 1t follows
that (G/K, R)-gr is an AB3 category, and by its construction, it easily follows that
FEIE preserves direct sum
G/H P :

2.5. An another functor which we will use is the ”suspension” functor:
S¢/H?: (G/H, R)-gr — (G/?H)-grdefined by S¢/H?(N) = N(g),9 € G,

where 9H = gHg™! and N(g) = D.cc/on N(G)o with N(g)z = Nay .
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3. THE FINITE TOPOLOGY ON HOMg, i r(M, N)

3.1. Let R be a G-graded ring, K a subgroup of G, M = @geG M, € R-gr, and
N =8@,cq/x Nz € (G/K,R)-gr. By [M, 2.9], for each = € G/K, the set

HOMg/x,r(M,N), = {f € Homgr(M,N) | f(My) C Ny, for allg € G}
is an additive subgroup of Hompg (M, N). Moreover the sum
HOMeg,x,r(M,N) = > HOMg,k r(M,N),
zeG/K

is direct. Remark that we also have the equality

HOMg) g, (M, N) = Hom(c o, R)-gr U oy (M), N (),

where K = xKz~ !, L{g//jK: R-gr — (G/*K, R)-gr is the grade-forgetting functor and

N(z) is a object of (G/*K, R)-gr defined by

N(z) =N, N(z), = Nyy for every y € G/*K.
In particular, we have that Endr(M) contains a G-graded subring

ENDg(M) = @5 ENDR(M),,
geG
with
ENDg(M), = {f € Endgr(M) | f(M}) C My, for all h € G},

and HOM¢, g r(M, N) becomes a G/K -graded E-module where £ = ENDg(M)°PP.

The aim of this section is to establish the relationship between HOMg/ x r(M, N)
and Homp (M, N) in topological terms.

3.2. Let A be a Grothendieck category and let M,N be two object of A. Recall that
the finite topology on Hompg(M, N) is defined by giving a basis for the filter of the

neighborhoods of 0 as follows:
F(0) ={V(0,X) | X ranges over the finitely generated subobjects of M},

where

V(0,X) = Varn(0,X) = {f € Hom(M, N)| X C Ker f}.

In this way, Hom (M, N) becomes a topological abelian group, which is actually a
subspace of NM endowed with the product topology, each of the components having the
discrete topology.
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If A is locally finitely generated (that is, it has a set of finitely generated genera-
tors or, equivalently, every object is the sum of its finitely generated subobject), then
Hom 4 (M, N) is a complete Hausdorff topological space in the finite topology (see [GMN,
Section 2]). In particular this hold if A = R-mod. In this case, a filter of neighborhoods
of 0 is

{V(0,X) | X is a finite subset of M}.

Indeed, if V(0,{z1,...,x,}) is a neighborhood of 0 in the finite topology, defined in
this way, then V(0,{z1,...,z,}) = V(0,(z1,...,z,)) is a neighborhood of 0 in the
finite topology; conversely, V (0, X) = V(0,{x1,... ,x,}) where {z1,... ,x,} generates
the submodule X of M.

3.3. Returning to the case when X € R-gr and N € (G/K,R)-gr we have that
HOMg, i ,r(M,N) € Hompg(M,N) is a topological space with the induced topology
and this is precisely the finite topology. Indeed, if

V(0,{x1,... ,2n}) = {f € HOMg/x r(M,N) | f(z1) = ... = f(zn)}
is a neighborhood of 0 in the finite topology on HOM¢,k r(M, N), then
VI(0,{z1,... ,zn}) =V (0,{z1,... ,2n}) NHOM¢ i r(M, N),

where

V(0,{z1,...,xn}) ={f € Homg(M,N) | f(z1) = ... = f(an)}.

Moreover, for every f € HOMg,x r(M, N) we have that

VI(f Az, zn}) = F+HV(0,{z1,... ,2n}).

Thus HOMg, x,r(M, N) is a Hausdorff topological abelian group in the finite topology.

3.4. Recall that if X is a topological space, then the family {z; | i € I} is called
summable to x € X if for every neighborhood V' of x there is a finite subset Jy of [
such that for each finite subset J of I containing Jy, we have Zie ;x; € V. In this case
we write ), ;2 = .

We claim that if X = Hompg(M, N), then it is enough to consider only neighborhoods
of the type V(f,{m}) where f € Homg(M,N) and m is a homogeneous element of
M. Indeed, let {f; | i € I} be a family in Hompg(M, N) with the property that for
every neighborhood V(f,m,) with my € M,, there is a subset Jy of I such that
for every finite subset J of I containing Jo we have . ; fi € V(f,my). Now let

m=mi+...+m, € M where mq,...,m, are homogeneous and let .J1,... ,J, be finite
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subsets such that for every j € {1,...,} and for every finite subset J of I with J; € J
we have >, fi € V(f,my), that is 37, ; fr(m;) = f(my). If we let Jo = Uj_, J;
then (>, fi)(m;) = f(my), hence > . ; fi € V(f,m) for every finite subset .J of
I containing Jy. Finally let V' = V(f,{m1,... ,my}) be a neighborhood of f. Then
there are the finite subsets Ji,...,J;, of I such that for every [ € {1,... ,k} and for
every finite subset .J of I containing .J; we have (Y .., fi)(mi) = f(my). If we set
Jy = Ule Jj, then for every finite subset J of I containing Jy we have . , f; €V,
hence ), ; fi = f, and the claim is proved.

The goal of this section is to show that Hompg (M, N) is the completion of its subgroup
HOM¢ /g r(M, N), in the finite topology and to and to examine the relationship between
HOMg,/g,r(M,N) and HOM¢,k r(M,N), where K < H are subgroups of G.

3.5. Let f € Homg(M,N), g € G and = € G/H. We define the abelian groups

homomorphism

for M =M, — N
geG

with components
f2: My — N, fl(mg)= f(mg)gs forall my € My,

where f(mg)ge is the homogeneous component of f(mgy) € N =@, cq /i Ny belonging
to Ngg.
If r, € Ry, h € G, then rpymg € My, so

fe(rnmg) = fa]clg(rhmg) = f(ramg)nge = (rnf(mg))nga-

Since every element of N has a unique decomposition into homogeneous components, it
follows that f,(rpmg) = rpfz(my). Consequently, f, is R-linear. Further, by definition
we have that f, € HOMg g r(M,N),.

Now we may state the main result of this section.

3.6. Theorem. If M € R-gr and N € (G/H, R)-gr, then with the above notations the
following statements hold:

a) The family {f. | * € G/H} is summable to f in the finite topology, and the
components f, are uniquely determined by the properties f, € HOMg g r(M,N), and

ZwEG/H fl’ = f
b) Homp (M, N) is the completion of HOMq, g r(M, N) in the finite topology.

Proof. a) By (3.4) we may restrict to the case of neighborhoods of the form V'(f,my)
where my € M, for some g € G. Let f(mg) = ng, + ... 4+ ng, with n,; € N, be the
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decomposition of f(m,) into homogeneous components. We set Jy = {z1,...25}. Then
Jo is a finite subset of G/H and f(my) = (3_,c;, fz(mg), hence >, fo € V(f,my).
Since for each z € G/K \ Jy we have f(m,) = 0, it follows that for every finite subset
J of I containing Jo, f(my) = (3 ,cs fo(my). Therefore > _; f. € V(f,mgy), and
consequently, >~ JH fz = f in the finite topology.

For the uniqueness, we assume that g, | x € G/H is another family of morphisms such
that g, € HOMg, g r(M, N), and erG/Hg«T =f. If fo, # gu, for some zy € G/H,
then there exits m, € M, such that f;, # gz,. We consider the neighborhood V (f, mg)
of f in the finite topology. Then we may find the finite subset Jo € Py(G/H) (where
P¢(G/H) denotes the set of all finite subsets of G/H ) with the property that for every
J € Pp(G/H) for which Jo € J we have }° c/pyfo € V(fimg) and 3 c/py 9z €
V(f,mg). If weset J = JoU{xo}, then J € Py(G/H) and (> ., fo(mg) = f(mg) =
(>_ses 9z(myg). By the uniqueness of the decomposition into homogeneous elements it
follows that fg,(mg) = guo (My)-

b) Let f be an element of Homp (M, N). With the above notations, for some J €
P¢(G/H) we have

> fr€ @ HOMemr(M,N), = HOMg, g r(M,N),

xzed z€G/H
and a) implies that HOM¢, g r(M,N) NV (f,m) # 0. Hence HOMg,/f,r(M,N) is
dense in Hompg(M, N) in the finite topology. But Hompg(M, N) is a complete Hausdorff
topological space in the finite topology, hence it is the completion of HOM¢g /g r(M, N).

3.7. Corollary. If K < H are subgroups of G, then HOMg, g r(M,N) is dense in
HOM¢, u,r(M,N) in the finite topology.

3.9. Proposition. With the notations from the prop. 3.8., if H/K is a finite set then

HOM¢,p,r(M,N) = HOMg/ k., r(M, N)

Proof. For begin let f € HOMg ;g r(M,N)yg and {hi,...,h,} = [H/K] be a
transversely for H/K. Since H = [,y g hK we have, for a fixed gH € G/H,
9H =Upeim i WK = g KU. . .Ugh, K, and G/K = {ghK | g € [G/H],h € [H/K]}.
Thus

DN- DD N D DV —D D Nor

z€G/K g€[G/K] he[H/K)] g€e[G/H] i=1 =1 ge[G/H]
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We consider the canonical projections p,: N — @ gelG/ H] Ngn,x and the composition
pnof: M — @QG[G/H] Ngh, i . Since f(My) C Nigm and for each kH € G/H there exist
a unique i € {1,... ,n} such that gh; K C kgH. Thus f may be write as > ., (f opy)
with fop, € HOM¢,x r(M,N). Now the general case when f € HOM¢, /g r(M,N)
follow from the fact that f may be write as a finite sum of morfisms belonging to
HOMg, g ,r(M, N)yu with gH ranges over G/H .

4. SMALL GRADED MODULES

4.1. Let A be an abelian category satisfying AB3, and let M be an object of A. M is
called small if the functor Hom 4 (M, —): A — Ab preserves direct sum or, equivalently,
preserves denumerable direct sum [S, p. 134]. This is equivalent to the fact that any
morphism f: M — @,y X;: factors trough a finite coproduct @, . X;, where F a
finite subset of N [Mitchell, pag.74]. More generally we say that M is N-small if
Hom (M, —): A — Ab preserves (denumerable) direct sum of copies of N (for N = M

one gets the concept of a self-small object). We will use the following results.

4.2. Proposition. [GMN, Proposition 1.1] Let A be an ABS3 category and M an object
of A. Then M is small if and only if M is N -small for every object N of A.

4.4. Theorem. [GMN, th. 1.3.] Let A and B be AB3 categories, M € A and N € B.
Let U: A — B be a left adjoint of the functor F: B — A and assume that F preserves
direct sum. Then the following assertion hold:

a) M is F(N)-small in A if and only if U(M) is N -small in B.

b) If M is small in A then U(M) is small in B.

4.5. The connection between small objects and finite topology is as follows (cf. [GMN,
pp. 3176-3177]). If the finite topology of Hom 4(M, N) is discrete, where A is a Grothen-
dieck category, then M is N-small. The converse is true if we assume in addition that A
being locally finitely generated and the finite topology of Hom 4 (M, N) being first count-
able. If A is a locally finitely generated Grothendieck category and M € A is countably
generated, then M is N-small if and only if the finite topology of Hom (M, N) is
discrete.
Now we return to our context, and let
U=UG); (G/K, R)-gr — (G/H, R)-gr
be the grade forgetting functor introduced in Section 2 and

F = fg//g: (G/H,R) — (G/K, R)-gr

its right adjoint.
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4.6. Proposition. Let R be a G -graded ring and K < H subgroups of G. If M and
N are two objects of (G/K, R)-gr, then the following statements hold:

a) M is small in (G/H, R)-gr if and only if M is small in (G/K, R)-gr.

b) M is U(N)-small in (G/H,R)-gr if and only if M is FU(N))-small in
(G/K, R)-gr.
Proof. a) The necessity is obvious since we have that Hom g,k gr)-gr (M, N) is a subset of
Hom (¢ /#,g)-gr (M, N) for every N € (G/K, R)-gr. The sufficiency follows by Theorem
4.4.b), applied to the functor & whose right adjoint F preserves direct sum.

b) By Theorem 4.2.a), we have that M = U (M) is U(N)-small in (G/H, R)-gr if and
only if M is F(U(N))-small in (G/K, R)-gr.

4.7. Remarks. a) If M is a G-graded R-module, then M may be regarded as an object
of (G/K, R)-gr via the functor

L{g//ll{: R-gr — (G/K, R)-gr.

Then statement a) of the above becomes:

The object M of R-gr is Z/{g//g(N) -small in (G/H, R)-gr if and only if M is

F(U(N))-small in (G/K, R)-gr.

? b) If (U,F) is the pair of adjoint functors defined as above and if N € (G/K, R)-gr
then we have:
FumN)= @ ( P Now= D ( D Nuk)
gKeG/K yesH/IK gKEG/K hdKesH/IK

where N(g) is the g-th suspension of N and 9K = gKg~! [cf. M]

4.8. Lemma. c. Let M € R-gr and N € (G/H,R)-gr. If M is N -small in R-mod
then
HOMg, . 7(M, N) = Homp(M, N)

Proof.. As in the section 3 we associate to each R-morphism f € Hompg(M,N) and
each v = gH € G/H a morphism f, € HOMg, g r(M, N), = Hom (/s R)-gr (M, N(g))
defined by fz(mn) = fou(My) = f(mn)ngu for every h € G,m; € M. Conform
th.3.777777. {f. | € G/H} is summable to f in the finite topology i.e. >0 cc g fo =
f. Since every f(m) has a unique (finite!) decomposition in homogeneous component,
it follow that supp{f.(m) |z € G/H} is finite. Thus we can define a mapping g: M —
D.cc/u N¥, where N* 2 N, by g(m) = (fz(m))zec/u for every m € M. Obviously,
g is an R-morphism and since M is N-small in R-mod, there exists x1,... ,2, € G/H
such that g(M) C @), N*i. Therefore f, =0 for x € G/H\{z1,... ,2,} and f =
> 1 fa,- This show that f € Homg, g r(M,N).
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4.9. Corollary. Let R be a G-graded ring and K < H < G. Let M € R-gr and
N e (G/K,R)-gr. If M is N-small in R-mod then

HOMg, g, r(M,N) = HOMg,k r(M, N)

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, K < H < G two subgroups such that
H/K is infinite and K is normal in G. Let M € R-gr. Then the following statements
are equivalent:

(i) M is small in (G/K,R)-gr (R-mod, R-gr,(G/H, R)-gr)

(ii))HOM¢ g, r(M, N) = HOM¢ i, r(M,N) for every N € (G/K, R)-gr

Proof. (i)=-(ii) From prop.4.1. and corollary 4.7.

(i) = (i) Let M = D, My € R-gr such that HOM¢, g r(M, N) = Homg(M, N) for
every N € (G/H, R)-gr. Since K < G we have for every g € G that YK = gKg ' = K
and the g-th suspension of N noted N(g) belongs to (G/K, R)-gr = (G/K, R)-gr. The
G/ K -grader of N(h) is give as N(h) = @ c(q/x) N(h)gx with N(h)gx = Ngnx and
of e/ N(h) as

@D Nw= D ( P Nox)

he[H/K] g€|G/K] he[H/K]

Let u € Hom(G,k,R)-gr(M, Dpe(p i) N (h) where [H/K] C H is a transversely for
H/K (as we have seen By, c(y/x) N (h) € (G/K, R)-gr). Since every n € @B, (5,5 NV (h)
has a unique finite decomposition n = n(hy)+...+n(hg) with n(h;) € N(h;),1 <j <k,

we may define a R-morphism
t: @ N(h) — Nbyt(n Zn(h Z n(h).
he[H/K)] helH/K

In fact ¢ is the R-morphism €B,,c(y/x) N(h) — N with all component 1y . Moreover

t( @ h)gx) = t( @ Ngnk) € Ngu

he[H/K)] h€e[H/ K]

, where Nyp is the homogeneous component of N see as G/H -graded. This show that
t € HOMg,m r(M, B cm/rg N(h)). We set u=tou: M — N. Then

i € HOMg,p,r(M,N) = HOMg,x r(M,N) = € HOMc¢,k r(M, N)yx,
g€[G/ K]
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and so there exists ¢1K,...,9sK € G/K and u, € HOMg/ gk r(M,N)yrx =
Hom (/i r)-gr (M, N(g:)),1 < i@ < s such that & = Y] ju,. Thus a(M,) C
N(g1)gx + .- -N(9s)gx = Nggx + ... + Ngg.x for each g € G. It follows that if
mg € My for some g € G and u(mgy) = (nn)ze(r/x], With ny € N(h)gx = Ngni then

u(mg) = Z n(h) € Ngg,k + .+ Ngg. K-
he[H/K]

This shows that n(h) = 0 for each h € [H/K|\{gg1,...,99s}. Consequently
Imu C @;_, N(h;) with n < s and this inclusion hold for an arbitrary morphism
u € Homg /i, ry-gr (M, N).

Let now f: M — @,.yXi be a morphism in (G/K,R)-gr. Let A = @ic NX;
and N = D, cq/x A(9) € (G/K, R)-gr. Then N has the property that N(g) = N in
(G/K, R)-gr for each g € [G/K], in particular, for each ¢ = h € [H/K]. Since H/K is
infinite, we may assume that N is a subset of H/K and we obtain a monomorphism in
(G/K, R)-gr:

v: N® - @ N(h).
he[H/K]

We note by 0: A — N and p;: X; — A the canonical injections. Since (G/K, R)-gr is
AB3, the morphism

w = @(O‘Opi): A— N®

i€N

is a monomorphism. We get a morphism in (G/K, R)-gr: vowof: M — @y, c(p/x) N(h)-
As we have seen above, Im(vowo f) C @;_, N(h;) for some elements hy, ..., h, €
[H/K]. Consequently Im f C @i € FX;, where F' = NN {hq,...,h,} and hence we
see that M is small in (G/K, R)-gr.

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, H < G a subgroup such that G/H s
infinite and M € R-gr. Then the following statements are equivalent:

(i) M is small in (G/H, R)-gr (R-mod, R-gr )]

(ii)) HOM¢, g, r(M,N) = Homg(M, N) for every N € (G/H, R)-gr.

Proof. (i)=-(ii) from prop.4.1. and lemma 4.5.

(i) = (i) Let M = @, cc My € R-gr such that HOMg, g r(M,N) = Hompg(M, N)
for every N € (G/H, R)-gr. Let u € Hom (g, p, g)-gr(M, @xeG/H N7) where N* = N,
hence u(M,) C @xeG/H(Nm)gH for every g € G. Since every n € @, g/ N has a

unique finite decomposition n = ng, + ...+ ng, with n,, € N%,1 < j < k, we may
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define a mapping

k
t: GB NxHbet(n):anj: Z Ng.
i=1

ceG/H zeG/H

Obviously t is a R-morphism. We set u =tou: M — N. Then

u € Homp(M,N) = HOMg,y r(M,N) = @5 HOMg,y r(M,N),,

yeG/H
and so there exists y1,...,ys € G/H and u,, € HOMg, g r(M,N),,,1 <i < s such
that @ =>"_, uy,. Thus w(M,) C Ngy, + ...+ Ny, for each g € G. It follows that if
my, € My, for some h € G and w(mp) = (ng)zeq/, With ng € (N*),H then
a(mp) = Y ng €Ny +...+ N,
c€G/H

and Ny, = N;"H, for some z; € G/H,1 < i < s. This show that n, = 0 for each
z € G/H\{z1,... ,z5}. Consequently Imu C @;_, N* and this inclusion holds for an
arbitrary morphism u € Hom g, p g)-gr(M, N).

Now let f: M — @i € NX; be a morphism in (G/H, R)-gr. Let A = @i e NX;
and N = @, cq/y A” € (G/H,R)-gr with A” = A. Since G/H is infinite, we may
assume that N is a subset of G/H and we obtain a monomorphism in (G/H, R)-gr:

v: Ny — @ N.
ve€G/H
We note by 0: A — N and p;: X; — A the canonical injections. Since (G/H, R)-gr is
AB3, the morphism

w:@(aopi): A — NN
ieN
is a monomorphism. We get a morphism in (G/H, R)-gr: vowo f: M — ®x€G/H N*
with N* 22 N. As we have seen above, Im(vowo f) C @;_, N* for some elements
Z1,...,25s € G/H. Consequently Im f C @i € FX;, where F =NN{xy,...,z5} and
hence we see that M is small in (G/H, R)-gr.

4.11. Corollary. Let R be a G-graded ring and K < H < G two subgroups such that
H/K is infinite. Then the following statements are equivalent:

(i) M is small in (G/H, R)-gr (R-mod, R-gr ).

(i) HOMg,pg,r(M,N) = HOMg,k gr(M,N) for every N € (G/K,R)-gr.

2.5. An another functor which we will use is the ”suspension” functor:
S¢/HY: (G/H, R)-gr — (G/9H)-grdefined by S¢/H?(N) = N(g),9 € G,
where 9H = gHg™! and N(g) = D.cc/on N(G)o with N(g)z = Nay .
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3.6. Theorem. Let R be a G-graded ring and H < G. Let M € R-gr and N €
(G/H, R)-gr. With the above notations we have:
(i) The family {f. | © € G/H} is summable to f in the finite topology with f,
uniquely determined with the properties f, € HOMg, g r(M,N), and erG/H fe= 1.
(ii) Homg (M, N) is the completion of HOMq, g, r(M, N) in the finite topology.

Proof. (i) We restrict at neighborhoods of the form V(f,m,) with m, € M, for some
g € G, a homogeneous element. Lte f(mg) = ng + ...+ ng, with Ng, € Ny, the
decomposition of f(m,) in the homogeneous components. We set Jy = {x1,...24}.
Then Jo is a finite subset of G/H and f(mgy) = (3 ,c; fz(my) hence > ; f. €
V(f,mg). Since for each z € G/K\Jy we have f(m,) = 0, it follows that, for every finite
subset J of I, containing Jo, f(mgy) = (3_,c; fz(my), therefore >, fo € V(f,my).
Consequently, > i fo = [ in the finite topology.

For the uniqueness we assume that g, | © € G/H is another family of morphisms such
that g, € HOMg/ g r(M, N), and erG/H 9o = f. If fo, # Gu, for some zy € G/H
then there exit m, € M, such that f,, # g,. We consider the neighborhood V'(f, m,)
of f in the finite topology. Then we may find Jy € Ps(G/H) where Ps(G/H) is the
set of all finite subsets of G/H, whiththe property that for every J € Py(G/H) for
which Jo € J we have >° ./ fo € V(fimg) and }- cq/p 92 € V(f,mg). We set
J = JoU{zo}. Then J € Pr(G/H) and (e, folmy) = fimy) = (Syey g2(my)
and from the uniqueness of the decomposition in homogeneous elements it follows that
fzo(mg) = gz, (mg), which is a contradiction.

(ii) Given f belonging to Hompg(M, N) Whit the above notations, for some J €
P¢(G/H) we have

> fo € @ HOMe/a r(M,N)s = HOMg, . r(M,N)

xeJ z€G/H
and the result (i) implies HOMg, g r(M,N) NV (f,m) # 0. Hence HOM¢g, g r(M <
N) is dense in Hompg(M, N) on the finite topology. But Hompg(M, N) is a complete

Hausdorff topological space in the finite topology, consequently, it is the completion of
|HOMg/p,r(M,N).

3.7. Remark. If 1 = H < G then (G/1, R)-gr = R-gr and and the above theorem is just
the theorem 1.2. of [GN].

3.8. Corollary. If R is G-graded ring and K < H < G are two subgroups then
HOMg, i, r(M, N) is dense in HOMq, g r(M, N) on the finite topology.
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3.9. Proposition. Let R be a G -graded ring, M € R-gr, and N € (G/K, R)-gr where
K < H < G are two subgroups. Thus each f € HOMg, g r(M,N)ym, (g € G) may be
write as [ = ZzegH/gK f= where f. € HOMs /o, (M, N).

Proof. Let
f € HOMg g, r(M,N)gr = Hom(G o i1, p)-gr (M, N(g)) = HOMg o g, (M, N)s

Since f € Hompg(M,N) th. 3.6. give the relation f = ZhE[G/gK] frorx where frog €
HOMg /s g, r(M,N) and [G/9K] C G is a transversely for G/9K. Moreover, we have
for each k € G: f(My) CUN(9)rn = Drecjox N9z and frox C Nppox . Since
HOMg /s g, r(M, N) is a Hausdorff topological space and f = Zhe[G/gK] fnox it follows
that Npper C @xeG/g,K N(g)z- Thus freg (M) #) implies kh9K C k9H

3.10. Corollary. With the notations from the prop. 3.8., if H/K is a finite set then

HOMg, g r(M,N) = HOMg,k r(M, N)

The main result of this section is the following:

4.8. Theorem. Let R be a G-graded ring, K < H < G two subgroups such that H/K
s infinite and K is normal in G. Let M € R-gr. Then the following statements are
equivalent:

(i) M is small in (G/K, R)-gr (R-mod, R-gr,(G/H, R)-gr)

(it))HOM¢ g, r(M,N) = HOMg, i, r(M,N) for every N € (G/K, R)-gr

Proof. (i)=-(ii) From prop.4.1. and corollary 4.7.

(i) = (i) Let M = D, My € R-gr such that HOMg, g r(M, N) = Hompg(M, N) for
every N € (G/H, R)-gr. Since K < G we have for every g € G that 9K = gKg~ ! = K
and the g-th suspension of NV noted N(g) belongs to (G/K, R)-gr = (G/K, R)-gr. The
G/K-grader of N(h) is give as N(h) = @ c(q/x) N(h)gx with N(h)gx = Ngnk and
of Dypeim/r) N(h) as

D vw= P ( D Nux)

he[H/K] 9€|G/K] he[H/K]

Let u € Hom(g,,R)-gr(M, Dpe(p i) N (h) where [H/K] C H is a transversely for
H/K (as we have seen @,y k) N(h) € (G/K, R)-gr). Since every n € D,y i NV (h)
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has a unique finite decomposition n = n(hy)+...+n(hg) with n(h;) € N(h;),1 <j <k,

we may define a R-morphism

t: @ N(h) — Nbyt(n Zn(h > n(h).

he[H/K] he[H/K

In fact t is the R-morphism @he[ w/k) N (h) — N with all component 1y. Moreover

t( @ h)gr) = t( @ Ngnx) € Nyu

he[H/K] he[H/ K]

, where Ngp is the homogeneous component of N see as GG/H -graded. This show that

u € HOMg,p,r(M,N) = HOMg/ i r(M,N) = EB HOMg, k r(M, N)gK,
9€[G/K]
and so there exists ¢1K,...,g.K € G/K and uy, € HOMg /g r(M,N)grx =
Hom (/i r)y-er (M, N(g:)),1 < i < s such that & = Y ; jug,. Thus a(M,) C
N(g1)gx + ... N(9s)gx = Nggx + ... + Nyg.x for each g € G. It follows that if
my € My for some g € G and u(my) = (nn)ze[m/K], With np € N(h)gx = Ngnx then

a(mg) = Y n(h) € Nyg,ic + ...+ Nyg.x
he[H/ K]

This shows that n(h) = 0 for each h € [H/K]\{gg1,-..,99s}. Consequently
Imu C @;_, N(h;) with n < s and this inclusion hold for an arbitrary morphism
u € Hom g/ k Rr)-gr (M, N).

Let now f: M — @,y X: be a morphism in (G/K, R)-gr. Let A = @i € NX;
and N =@ ¢ x Al9) € (G/K, R)-gr. Then N has the property that N(g) = N in
(G/K, R)-gr for each g € [G/K], in particular, for each g = h € [H/K]. Since H/K is
infinite, we may assume that N is a subset of H/K and we obtain a monomorphism in
(G/K, R)-gr:

v: N® - @ N(h).

he|H/ K]
We note by 0: A — N and p;: X; — A the canonical injections. Since (G/K, R)-gr is
AB3, the morphism

w = @(aopi): A— N®
ieN
is a monomorphism. We get a morphism in (G/K, R)-gr: vowof: M — @y, ¢y x) N(h)-
As we have seen above, Im(vow o f) C @, N(h;) for some elements hy, ..., h, €
[H/K]. Consequently Im f C @i € FX;, where F' = NN {hq,...,h,} and hence we
see that M is small in (G/K, R)-gr.
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3.9. Proposition. With the notations from the prop. 3.8., if H/K is a finite set then

HOM¢,p,r(M,N) = HOMg/ k., r(M, N)

Proof. For begin let f € HOMg /g r(M,N)yg and {hi,...,h,} = [H/K] be a
transversely for H/K. Since H = {J, ¢y g hEK we have, for a fixed gH € G/H,
9H = Uperm ) WK = ghi KU. . .Ugh, K, and G/K = {ghK | g € [G/H],h € [H/K]}.
Thus

DN- D (D N D DY) - D D N

ze€G/K g€[G/K]| he[H/K] g€[G/H] i=1 =1 ge[G/H]

We consider the canonical projections p,: N — @ gelG/ H] Ngn,x and the composition
ppof: M — @ge[G/H] Ngn, i . Since f(My) C Niggm and for each kH € G/H there exist
a unique i € {1,... ,n} such that gh; K C kgH. Thus f may be write as > . ,(f opn)
with f o p, € HOMg,x r(M,N). Now the general case when f € HOMg, g r(M,N)
follow from the fact that f may be write as a finite sum of morfisms belonging to
HOMg, m,r(M,N)yu with gH ranges over G/H .
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