GROUPS OF HOMOMORPHISM GRADED BY G-SETS

ANDREI MARCUS AND CIPRIAN MODOI

"Babes-Bolyai" University Faculty of Mathematics and Computer Science Str. Mihail Kogălniceanu nr. 1 R)-3400 Cluj-Napoca, ROMANIA

1. INTRODUCTION

Let G be a group and $R = \bigoplus_{g \in G} R_g$ a G-graded ring. If $M = \bigoplus_{g \in G} M_g$ and $N = \bigoplus_{g \in G} N_g$ are G-graded rings then E.C. Dade showed in [D1] that the group $\operatorname{Hom}_R(M, N)$ has a subgroup denoted $\operatorname{HOM}_R(M, N)$ which can be endowed with a natural G-grading:

$$\operatorname{HOM}_{R}(M, N)_{g} = \{ f \in \operatorname{Hom}_{R}(M, N) \mid f(M_{h}) \subseteq N_{hg} \text{ for all } h \in G \}$$
$$= \operatorname{Hom}_{R-gr}(M, N(g)),$$

where *R*-gr denotes the category of *G*-graded *R*-modules and grade preserving *R*-morphisms and N(g) is the *G* graded module, called the *g*-suspension of *N*, with N(g) = N and $N(g)_h = N_{hg}$ for all $h \in G$.

In particular, $\text{END}_R(M) = \text{HOM}_R(M, M)$ is a *G*-graded ring and $\text{HOM}_R(M, N)$ becomes a *G*-graded *E*-module, where $E = \text{END}_R(M)^{opp}$ (with grading given by $E_g = \text{END}_R(M)_{g^{-1}}$).

The natural problem which arises is to give condition under which $\operatorname{HOM}_R(M, N) = \operatorname{Hom}_R(M, N)$. Some condition were established by Dade in [D1] and a general answer was given by Gómez-Pardo, Militaru and Năstăsescu in [GMN], using among other things the fact, proved in [GMN, Theorem 1.2], that $\operatorname{Hom}_R(M, N)$ is the completion of $\operatorname{HOM}_R(M, N)$ in the finite topology.

Dade also introduced in [D2] a useful generalization of G-graded modules, namely modules graded by G-sets. We shall be interested only in modules graded by transitive G-sets, so let H be a subgroup of G and denote by G/H the set $\{gH \mid g \in G\}$ of left cosets of H in G. An R-module N is G/H if $N = \bigoplus_{x \in G/H} N_x$ (as additive

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

subgroups) and $R_g N_x \subseteq N_{gx}$ for all $g \in G$ and $x \in G/H$. Denote by (G/H, R)-gr the category of G/H-graded R-modules and grade preserving R-morphisms. Observe that (G/G, R)-gr = R-mod, while (G/1, R)-gr = R-gr. Moreover, (G/H, R)-gr is a Grothendieck category and it was investigated in detail in [NRV] and [NSV].

The construction of "HOM" was generalized in [M, section2]. If M is a G-graded R-module and N is a G/H-graded R-module then $\operatorname{Hom}_{G/H,R}(M,N)$ has a subgroup $\operatorname{HOM}_R(M,N)$ endowed with a natural G/H-grading such that $\operatorname{Hom}_{G/H,R}(M,N)$ is a G/H-graded R-module.

Recall that if $K \leq H \leq G$ then there is a functor

$$\mathcal{U} = \mathcal{U}_{G/K}^{G/H} \colon (G/K, R)\text{-}\mathrm{gr} \to (G/H, R)\text{-}\mathrm{gr}$$

sending a G/K-graded R-module N to the G/H-graded R-module $\mathcal{U}(N) = N$ with

$$\mathcal{U}(N)_x = \bigoplus_{\substack{y \in G/K \\ y \subseteq x}} N_y.$$

The details on this functor and on its right adjoint are given in Section 2.

In Section 3 we recall the definition of $\operatorname{HOM}_{G/K,R}(M,N)$ and we investigate its relation to $\operatorname{HOM}_{G/H,R}(M,N)$ in connection with the finite topology on $\operatorname{Hom}_R(M,N)$. Our situation gives rise to two composite functor:

$$\operatorname{HOM}_{G/H,R}(M,-) \circ \mathcal{U}_{G/H}^{G/K} \colon (G/K,R)\operatorname{-gr} \to (G/H,R)\operatorname{-gr},$$

and

$$\mathcal{U}_{G/H}^{G/K} \circ \operatorname{HOM}_{G/K,R}(M,-) \colon (G/K,R)\operatorname{-gr} \to (G/H,R)\operatorname{-gr}.$$

Loosely speaking we ask when these functors are equal. Our main result in Section 4 generalize [GMN, Th. 3.4] and states that if H/K is infinite, then the functors are equal if and only if M is a small R-module.

In this paper rings are always associative with unit element, and modules are unitary and left. Besides the above mentioned papers, we refer to [NRV] for general facts on graded rings and modules.

2. The grade forgetting functor and its adjoint

In this section we provide the details on the properties of the grade forgetting functor. Let $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring as in the introduction, and fix two subgroups $K \leq H$ of *G*.

2.1. The grade forgetting functor

$$\mathcal{U} = \mathcal{U}_{G/H}^{G/K} \colon (G/K, R)\text{-}\mathrm{gr} \to (G/H, R)\text{-}\mathrm{gr}$$

is defined as follows: for $M = \bigoplus_{x \in G/K} M_x \in (G/K, R)$ -gr we have $\mathcal{U}(M) = \overline{M} = \bigoplus_{y \in G/H} \overline{M}_y$, where $\overline{M} = M$ (as *R*-module), and $\overline{M}_y = \bigoplus_{x \subseteq y} M_x$ for all $y \in G/H$, and obviously, $\mathcal{U}(f) = f$ for every morphism $F: M \to M'$ in (G/K, R)-gr.

2.2. There is functor in the opposite direction

$$\mathcal{F} = \mathcal{F}_{G/H}^{G/K} \colon (G/H, R)\text{-}\mathrm{gr} \to (G/K, R)\text{-}\mathrm{gr}$$

defined as follows: for $N = \bigoplus_{y \in G/H} N_y \in (G/H, R)$ -gr we have

$$\mathcal{F}(N) = \tilde{N} = \bigoplus_{x \in G/K} \tilde{N}_x, \qquad \tilde{N}_x = N_{xH},$$

with multiplication by scalars given by $r_g \tilde{n}_x = r_g n_y \in N_g x$ where y = xH, $\tilde{n}_x = n_y \in N_y$, $r_g \in R_g$, $g \in G$.

If $f: N \to N'$ is morphism in (G/H, R)-gr, then $\tilde{f} = \mathcal{F}(f): \tilde{N} \to \tilde{N}'$ is given by $\tilde{f}(\tilde{n}_x) = f(n_y) \in \tilde{N}_x = N_y$, with y = xH and $\tilde{n}_x = n_y$ as above.

2.3. Lemma. With the above notation we have:

a) $\mathcal{F} = \mathcal{F}_{G/H}^{G/K}$ is a right adjoint of $\mathcal{U} = \mathcal{U}_{G/H}^{G/K}$

b) If H/K is finite then \mathcal{F} is also a left adjoint of \mathcal{U} .

Proof. Let $M \in (G/K, R)$ -gr and $N \in (G/H, R)$ -gr. We define the functorial isomorphism

$$\Phi_{M,N}$$
: Hom_{(G/H,R)-gr}($\mathcal{U}(M), N$) \rightarrow Hom_(G/K,R)($M, \mathcal{F}(N)$),

by letting, for $f: \mathcal{U}(M) \to N$ and $m_x \in M_x$,

$$\Phi_{M,N}(f)(m_x) = f(m_x) \in \mathcal{F}(N)_x = N_{xH}.$$

Clearly, $\Phi_{M,N}$ is a well defined group homomorphism.

Define further

$$\Psi_{M,N} \colon \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,\mathcal{F}(N)) \to \operatorname{Hom}_{(G/H,R)}(\mathcal{U}(M),N),$$

by letting, for $g: M \to \mathcal{F}(N)$ and $m_x \in M_x = \mathcal{U}(M)_{xH}$,

$$\Psi_{M,N}(g)(m_x) = g(m_x) \in \mathcal{F}(N)_x = N_{xH}.$$

Again $\Psi_{M,N}$ is well defined and it is obvious that $\Psi_{M,N} = \Phi_{M,N}^{-1}$.

b) Assume that H/K is finite, and for M and N as above define

$$\Theta_{N,M}$$
: Hom_{(G/K,R)-gr}($\mathcal{F}(N), M$) \rightarrow Hom_(G/H,R)($N, \mathcal{U}(M)$),

and for $f: \mathcal{F}(M) \to N$ and $n_y \in N_y$,

$$\Theta_{N,M}(f)(n_y) = \sum_{\substack{x \in G/K \\ x \subseteq y}} f(\tilde{n}_x),$$

with $\tilde{n}_x = n_y \in \mathcal{F}(N)_x$.

Conversely, define

$$\Gamma_{N,M}$$
: Hom_{(G/H,R)-gr} $(N, \mathcal{U}(M)) \to$ Hom_(G/K,R) $(\mathcal{F}(N), M),$

by letting, for $g: N \to \mathcal{U}(M)$ and $\tilde{n}_x = n_y \in \mathcal{F}(N)_x = N_{xH}, y = xH$

$$\Gamma_{N,M}(g)(\tilde{n}_x) = g(n_x)_x,$$

where $g(\tilde{n}_x)$ is the *x*-th component of $g(\tilde{n}_x) \in \bigoplus_{x \in G/K} M_x$. Again it is easy to check that $\Gamma_{N,M} = \Theta_{N,M}^{-1}$.

2.4. Remark. a) The unit ζ of the adjoint pair $(\mathcal{U}, \mathcal{F})$ is defined by

$$\zeta_M \colon M \to \mathcal{F}(\mathcal{U}(M)), \ \zeta_M(m_x) = m_x \in \mathcal{F}(\mathcal{U}(M))_x,$$

for all $x \in G/K$, $m_x \in M_x$, the counit ξ_N given by

$$\xi_N : \mathcal{U}(\mathcal{F}(N)) \to N, \ \xi_N(\tilde{n}_x) = \tilde{n}_x \in N_{xH}$$

for all $\tilde{n}_x = n_y \in N_y$, $x \in G/K$, y = xH

b) If H/K is finite then the unit η_N of the adjoint pair $(\mathcal{F}, \mathcal{U})$ is defined by

$$\eta_N \colon N \to \mathcal{U}(\mathcal{F}(N)), \quad \eta_N(n_y) = \sum_{\substack{x \in G/K \ x \subseteq y}} \tilde{n}_x.$$

where $\tilde{n}_x = n_y \in N_y$. The counit μ_M is defined by

$$\mu_M \colon \mathcal{F}(\mathcal{U}(M)) \to M, \quad \mu_M(^{x'}m_x) = \begin{cases} m_x, & \text{if } x = x' \\ 0, & \text{if } x \neq x', \end{cases}$$

where $x, x' \in G/K$, xH = x'H and $x'm_x \in \mathcal{F}(\mathcal{U}(M))_{x'}$.

Observe that $\mu_M \circ \zeta_M = id_M$ and $\xi_N \circ \eta_N = |H/K| id_N$.

c) Recall that if $(N_i)_{i \in I}$ is a family of objects of (G/H, R)-gr then the direct sum of this family is $\bigoplus_{i \in I} N_i$ with G/H-grading given by $(\bigoplus_{i \in I} N_i)_y = \bigoplus_{i \in I} (N_i)_y$. It follows that (G/K, R)-gr is an AB3 category, and by its construction, it easily follows that $\mathcal{F}_{G/H}^{G/K}$ preserves direct sum.

2.5. An another functor which we will use is the "suspension" functor:

 $\mathcal{S}_G/H^g \colon (G/H, R)$ -gr $\to (G/^g H)$ -gr defined by $\mathcal{S}_G/H^g(N) = N(g), g \in G$,

where ${}^{g}H = gHg^{-1}$ and $N(g) = \bigoplus_{x \in G/{}^{g}H} N(G)_x$ with $N(g)_x = N_{xg}$.

3. The finite topology on $HOM_{G/K,R}(M,N)$

3.1. Let R be a G-graded ring, K a subgroup of G, $M = \bigoplus_{g \in G} M_g \in R$ -gr, and $N = \bigoplus_{x \in G/K} N_x \in (G/K, R)$ -gr. By [M, 2.9], for each $x \in G/K$, the set

$$\operatorname{HOM}_{G/K,R}(M,N)_x = \{ f \in \operatorname{Hom}_R(M,N) \mid f(M_g) \subseteq N_{gx} \text{ for all} g \in G \}$$

is an additive subgroup of $\operatorname{Hom}_R(M, N)$. Moreover the sum

$$\operatorname{HOM}_{G/K,R}(M,N) = \sum_{x \in G/K} \operatorname{HOM}_{G/K,R}(M,N)_x$$

is direct. Remark that we also have the equality

$$\operatorname{HOM}_{G/K,R}(M,N) = \operatorname{Hom}_{(G/^{x}K,R)\operatorname{-gr}}(\mathcal{U}_{G/^{x}K}^{G/1}(M),N(x)),$$

where ${}^{x}K = xKx^{-1}$, $\mathcal{U}_{G/{}^{x}K}^{G/1}$: R-gr $\to (G/{}^{x}K, R)$ -gr is the grade-forgetting functor and N(x) is a object of $(G/{}^{x}K, R)$ -gr defined by

$$N(x) = N$$
, $N(x)_y = N_{xy}$ for every $y \in G/^x K$.

In particular, we have that $\operatorname{End}_R(M)$ contains a *G*-graded subring

$$\operatorname{END}_R(M) = \bigoplus_{g \in G} \operatorname{END}_R(M)_g$$

with

$$\operatorname{END}_R(M)_g = \{ f \in \operatorname{End}_R(M) \mid f(M_h) \subseteq M_{hg} \text{ for all } h \in G \},\$$

and $HOM_{G/K,R}(M,N)$ becomes a G/K-graded E-module where $E = END_R(M)^{opp}$.

The aim of this section is to establish the relationship between $HOM_{G/K,R}(M,N)$ and $Hom_R(M,N)$ in topological terms.

3.2. Let \mathcal{A} be a Grothendieck category and let M,N be two object of \mathcal{A} . Recall that the finite topology on $\operatorname{Hom}_R(M, N)$ is defined by giving a basis for the filter of the neighborhoods of 0 as follows:

 $\mathcal{F}(0) = \{ V(0, X) \mid X \text{ ranges over the finitely generated subobjects of } M \},\$

where

$$V(0,X) = V_{M,N}(0,X) = \{ f \in \operatorname{Hom}_{\mathcal{A}}(M,N) | X \subseteq \operatorname{Ker} f \}.$$

In this way, $\operatorname{Hom}_{\mathcal{A}}(M, N)$ becomes a topological abelian group, which is actually a subspace of N^M endowed with the product topology, each of the components having the discrete topology.

If \mathcal{A} is locally finitely generated (that is, it has a set of finitely generated generators or, equivalently, every object is the sum of its finitely generated subobject), then $\operatorname{Hom}_{\mathcal{A}}(M, N)$ is a complete Hausdorff topological space in the finite topology (see [GMN, Section 2]). In particular this hold if $\mathcal{A} = R$ -mod. In this case, a filter of neighborhoods of 0 is

 $\{V(0,X) \mid X \text{ is a finite subset of } M\}.$

Indeed, if $V(0, \{x_1, \ldots, x_n\})$ is a neighborhood of 0 in the finite topology, defined in this way, then $V(0, \{x_1, \ldots, x_n\}) = V(0, \langle x_1, \ldots, x_n \rangle)$ is a neighborhood of 0 in the finite topology; conversely, $V(0, X) = V(0, \{x_1, \ldots, x_n\})$ where $\{x_1, \ldots, x_n\}$ generates the submodule X of M.

3.3. Returning to the case when $X \in R$ -gr and $N \in (G/K, R)$ -gr we have that $\operatorname{HOM}_{G/K,R}(M,N) \subseteq \operatorname{Hom}_R(M,N)$ is a topological space with the induced topology and this is precisely the finite topology. Indeed, if

$$V'(0, \{x_1, \dots, x_n\}) = \{f \in HOM_{G/K, R}(M, N) \mid f(x_1) = \dots = f(x_n)\}$$

is a neighborhood of 0 in the finite topology on $HOM_{G/K,R}(M,N)$, then

$$V'(0, \{x_1, \ldots, x_n\}) = V(0, \{x_1, \ldots, x_n\}) \cap HOM_{G/K, R}(M, N),$$

where

$$V(0, \{x_1, \dots, x_n\}) = \{f \in \text{Hom}_R(M, N) \mid f(x_1) = \dots = f(x_n)\}.$$

Moreover, for every $f \in HOM_{G/K,R}(M,N)$ we have that

$$V'(f, \{x_1, \ldots, x_n\}) = f + V'(0, \{x_1, \ldots, x_n\}).$$

Thus $HOM_{G/K,R}(M,N)$ is a Hausdorff topological abelian group in the finite topology.

3.4. Recall that if X is a topological space, then the family $\{x_i \mid i \in I\}$ is called summable to $x \in X$ if for every neighborhood V of x there is a finite subset J_V of I such that for each finite subset J of I containing J_V we have $\sum_{i \in J} x_i \in V$. In this case we write $\sum_{I \in I} x_i = x$.

We claim that if $X = \text{Hom}_R(M, N)$, then it is enough to consider only neighborhoods of the type $V(f, \{m\})$ where $f \in Hom_R(M, N)$ and m is a homogeneous element of M. Indeed, let $\{f_i \mid i \in I\}$ be a family in $\text{Hom}_R(M, N)$ with the property that for every neighborhood $V(f, m_g)$ with $m_g \in M_g$, there is a subset J_0 of I such that for every finite subset J of I containing J_0 we have $\sum_{i \in J} f_i \in V(f, m_g)$. Now let $m = m_1 + \ldots + m_n \in M$ where m_1, \ldots, m_n are homogeneous and let J_1, \ldots, J_n be finite subsets such that for every $j \in \{1, \ldots, \}$ and for every finite subset J of I with $J_j \in J$ we have $\sum_{i \in J} f_i \in V(f, m_j)$, that is $\sum_{i \in J} f_I(m_j) = f(m_j)$. If we let $J_0 = \bigcup_{j=1}^n J_j$, then $(\sum_{i \in J} f_i)(m_j) = f(m_j)$, hence $\sum_{i \in J} f_i \in V(f, m)$ for every finite subset J of I containing J_0 . Finally let $V = V(f, \{m_1, \ldots, m_k\})$ be a neighborhood of f. Then there are the finite subsets J'_1, \ldots, J'_k , of I such that for every $l \in \{1, \ldots, k\}$ and for every finite subset J of I containing J'_l we have $(\sum_{i \in J} f_i)(m_l) = f(m_l)$. If we set $J_V = \bigcup_{l=1}^k J'_l$, then for every finite subset J of I containing J_V we have $\sum_{i \in J} f_i \in V$, hence $\sum_{i \in I} f_i = f$, and the claim is proved.

The goal of this section is to show that $\operatorname{Hom}_R(M, N)$ is the completion of its subgroup $\operatorname{HOM}_{G/H,R}(M, N)$, in the finite topology and to and to examine the relationship between $\operatorname{HOM}_{G/H,R}(M, N)$ and $\operatorname{HOM}_{G/K,R}(M, N)$, where $K \leq H$ are subgroups of G.

3.5. Let $f \in \operatorname{Hom}_R(M, N)$, $g \in G$ and $x \in G/H$. We define the abelian groups homomorphism

$$f_x \colon M = \bigoplus_{g \in G} M_g \to N$$

with components

$$f_x^g \colon M_g \to N, \ f_x^g(m_g) = f(m_g)_{gx}$$
 for all $m_g \in M_g$.

where $f(m_g)_{gx}$ is the homogeneous component of $f(m_g) \in N = \bigoplus_{y \in G/H} N_y$ belonging to N_{gx} .

If $r_h \in R_h$, $h \in G$, then $r_h m_g \in M_{hg}$, so

$$f_x(r_h m_g) = f_x^{hg}(r_h m_g) = f(r_h m_g)_{hgx} = (r_h f(m_g))_{hgx}$$

Since every element of N has a unique decomposition into homogeneous components, it follows that $f_x(r_h m_g) = r_h f_x(m_g)$. Consequently, f_x is R-linear. Further, by definition we have that $f_x \in HOM_{G/H,R}(M, N)_x$.

Now we may state the main result of this section.

3.6. Theorem. If $M \in R$ -gr and $N \in (G/H, R)$ -gr, then with the above notations the following statements hold:

a) The family $\{f_x \mid x \in G/H\}$ is summable to f in the finite topology, and the components f_x are uniquely determined by the properties $f_x \in HOM_{G/H,R}(M,N)_x$ and $\sum_{x \in G/H} f_x = f$.

b) $\operatorname{Hom}_R(M, N)$ is the completion of $\operatorname{HOM}_{G/H, R}(M, N)$ in the finite topology.

Proof. a) By (3.4) we may restrict to the case of neighborhoods of the form $V(f, m_g)$ where $m_g \in M_g$ for some $g \in G$. Let $f(m_g) = n_{x_1} + \ldots + n_{x_k}$ with $n_{x_j} \in N_{x_j}$ be the decomposition of $f(m_g)$ into homogeneous components. We set $J_0 = \{x_1, \ldots, x_k\}$. Then J_0 is a finite subset of G/H and $f(m_g) = (\sum_{x \in J_0} f_x(m_g))$, hence $\sum_{x \in J_0} f_x \in V(f, m_g)$. Since for each $x \in G/K \setminus J_0$ we have $f(m_g) = 0$, it follows that for every finite subset J of I containing J_0 , $f(m_g) = (\sum_{x \in J} f_x(m_g))$. Therefore $\sum_{x \in J} f_x \in V(f, m_g)$, and consequently, $\sum_{x \in G/H} f_x = f$ in the finite topology.

For the uniqueness, we assume that $g_x \mid x \in G/H$ is another family of morphisms such that $g_x \in \operatorname{HOM}_{G/H,R}(M,N)_x$ and $\sum_{x \in G/H} g_x = f$. If $f_{x_0} \neq g_{x_0}$ for some $x_0 \in G/H$, then there exits $m_g \in M_g$ such that $f_{x_0} \neq g_{x_0}$. We consider the neighborhood $V(f,m_g)$ of f in the finite topology. Then we may find the finite subset $J_0 \in \mathcal{P}_f(G/H)$ (where $\mathcal{P}_f(G/H)$ denotes the set of all finite subsets of G/H) with the property that for every $J \in \mathcal{P}_f(G/H)$ for which $J_0 \subseteq J$ we have $\sum_{x \in G/H} f_x \in V(f,m_g)$ and $\sum_{x \in G/H} g_x \in$ $V(f,m_g)$. If we set $J = J_0 \cup \{x_0\}$, then $J \in \mathcal{P}_f(G/H)$ and $(\sum_{x \in J} f_x(m_g) = f(m_g) =$ $(\sum_{x \in J} g_x(m_g))$. By the uniqueness of the decomposition into homogeneous elements it follows that $f_{x_0}(m_g) = g_{x_0}(m_g)$.

b) Let f be an element of $\operatorname{Hom}_R(M, N)$. With the above notations, for some $J \in \mathcal{P}_f(G/H)$ we have

$$\sum_{x \in J} f_x \in \bigoplus_{x \in G/H} \operatorname{HOM}_{G/H,R}(M,N)_x = \operatorname{HOM}_{G/H,R}(M,N)_x$$

and a) implies that $\operatorname{HOM}_{G/H,R}(M,N) \cap V(f,m) \neq 0$. Hence $\operatorname{HOM}_{G/H,R}(M,N)$ is dense in $\operatorname{Hom}_R(M,N)$ in the finite topology. But $\operatorname{Hom}_R(M,N)$ is a complete Hausdorff topological space in the finite topology, hence it is the completion of $\operatorname{HOM}_{G/H,R}(M,N)$.

3.7. Corollary. If $K \leq H$ are subgroups of G, then $\operatorname{HOM}_{G/K,R}(M,N)$ is dense in $\operatorname{HOM}_{G/H,R}(M,N)$ in the finite topology.

3.9. Proposition. With the notations from the prop. 3.8., if H/K is a finite set then

$$\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N)$$

Proof. For begin let $f \in HOM_{G/H,R}(M,N)_{gH}$ and $\{h_1,\ldots,h_n\} = [H/K]$ be a transversely for H/K. Since $H = \bigcup_{h \in [H/K]} hK$ we have, for a fixed $gH \in G/H$, $gH = \bigcup_{h \in [H/K]} ghK = gh_1K \cup \ldots \cup gh_nK$, and $G/K = \{ghK \mid g \in [G/H], h \in [H/K]\}$. Thus

$$N = \bigoplus_{x \in G/K} N_x = \bigoplus_{g \in [G/K]} \left(\bigoplus_{h \in [H/K]} N_{ghK} \right) = \bigoplus_{g \in [G/H]} \left(\bigoplus_{i=1}^n N_{gh_iK} \right) = \bigoplus_{i=1}^n \left(\bigoplus_{g \in [G/H]} N_{gh_iK} \right).$$

We consider the canonical projections $p_n: N \to \bigoplus_{g \in [G/H]} N_{gh_iK}$ and the composition $p_n \circ f: M \to \bigoplus_{g \in [G/H]} N_{gh_iK}$. Since $f(M_k) \subseteq N_{kgH}$ and for each $kH \in G/H$ there exist a unique $i \in \{1, \ldots, n\}$ such that $gh_iK \subseteq kgH$. Thus f may be write as $\sum_{i=1}^n (f \circ p_n)$ with $f \circ p_n \in \operatorname{HOM}_{G/K,R}(M,N)$. Now the general case when $f \in \operatorname{HOM}_{G/H,R}(M,N)$ follow from the fact that f may be write as a finite sum of morfisms belonging to $\operatorname{HOM}_{G/H,R}(M,N)_{gH}$ with gH ranges over G/H.

4. Small graded modules

4.1. Let \mathcal{A} be an abelian category satisfying AB3, and let M be an object of \mathcal{A} . M is called *small* if the functor $\operatorname{Hom}_{\mathcal{A}}(M, -) \colon \mathcal{A} \to Ab$ preserves direct sum or, equivalently, preserves denumerable direct sum [S, p. 134]. This is equivalent to the fact that any morphism $f \colon M \to \bigoplus_{i \in \mathbb{N}} X_i$ factors trough a finite coproduct $\bigoplus_{i \in F} X_i$, where F a finite subset of \mathbb{N} [Mitchell, pag.74]. More generally we say that M is N-small if $\operatorname{Hom}_{\mathcal{A}}(M, -) \colon \mathcal{A} \to Ab$ preserves (denumerable) direct sum of copies of N (for N = M one gets the concept of a *self-small* object). We will use the following results.

4.2. Proposition. [GMN, Proposition 1.1] Let \mathcal{A} be an AB3 category and M an object of \mathcal{A} . Then M is small if and only if M is N-small for every object N of \mathcal{A} .

4.4. Theorem. [GMN, th. 1.3.] Let \mathcal{A} and \mathcal{B} be AB3 categories, $M \in \mathcal{A}$ and $N \in \mathcal{B}$. Let $\mathcal{U}: \mathcal{A} \to \mathcal{B}$ be a left adjoint of the functor $\mathcal{F}: \mathcal{B} \to \mathcal{A}$ and assume that \mathcal{F} preserves direct sum. Then the following assertion hold:

- a) M is $\mathcal{F}(N)$ -small in \mathcal{A} if and only if $\mathcal{U}(M)$ is N-small in \mathcal{B} .
- b) If M is small in \mathcal{A} then $\mathcal{U}(M)$ is small in \mathcal{B} .

4.5. The connection between small objects and finite topology is as follows (cf. [GMN, pp. 3176-3177]). If the finite topology of $\operatorname{Hom}_{\mathcal{A}}(M, N)$ is discrete, where \mathcal{A} is a Grothendieck category, then M is N-small. The converse is true if we assume in addition that \mathcal{A} being locally finitely generated and the finite topology of $\operatorname{Hom}_{\mathcal{A}}(M, N)$ being first countable. If \mathcal{A} is a locally finitely generated Grothendieck category and $M \in \mathcal{A}$ is countably generated, then M is N-small if and only if the finite topology of $\operatorname{Hom}_{\mathcal{A}}(M, N)$ is discrete.

Now we return to our context, and let

$$\mathcal{U} = \mathcal{U}_{G/H}^{G/K} \colon (G/K, R)$$
-gr $\to (G/H, R)$ -gr

be the grade forgetting functor introduced in Section 2 and

$$\mathcal{F} = \mathcal{F}_{G/H}^{G/K} \colon (G/H, R) \to (G/K, R)$$
-gr

its right adjoint.

4.6. Proposition. Let R be a G-graded ring and $K \leq H$ subgroups of G. If M and N are two objects of (G/K, R)-gr, then the following statements hold:

a) M is small in (G/H, R)-gr if and only if M is small in (G/K, R)-gr.

b) M is $\mathcal{U}(N)$ -small in (G/H, R)-gr if and only if M is $\mathcal{F}(\mathcal{U}(N))$ -small in (G/K, R)-gr.

Proof. a) The necessity is obvious since we have that $\operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,N)$ is a subset of $\operatorname{Hom}_{(G/H,R)-\operatorname{gr}}(M,N)$ for every $N \in (G/K,R)$ -gr. The sufficiency follows by Theorem 4.4.b), applied to the functor \mathcal{U} whose right adjoint \mathcal{F} preserves direct sum.

b) By Theorem 4.2.a), we have that $M = \mathcal{U}(M)$ is $\mathcal{U}(N)$ -small in (G/H, R)-gr if and only if M is $\mathcal{F}(\mathcal{U}(N))$ -small in (G/K, R)-gr.

4.7. Remarks. a) If M is a G-graded R-module, then M may be regarded as an object of (G/K, R)-gr via the functor

$$\mathcal{U}_{G/K}^{G/1} \colon R\text{-}\mathrm{gr} \to (G/K, R)\text{-}\mathrm{gr}.$$

Then statement a) of the above becomes:

The object M of R-gr is $\mathcal{U}_{G/H}^{G/K}(N)$ -small in (G/H, R)-gr if and only if M is $\mathcal{F}(\mathcal{U}(N))$ -small in (G/K, R)-gr.

? b) If $(\mathcal{U}, \mathcal{F})$ is the pair of adjoint functors defined as above and if $N \in (G/K, R)$ -gr then we have:

$$\mathcal{F}(\mathcal{U}(N)) = \bigoplus_{gK \in G/K} (\bigoplus_{y \in {}^gH/{}^gK} N(g)_y) = \bigoplus_{gK \in G/K} (\bigoplus_{h^gK \in {}^gH/{}^gK} N_h gK)$$

where N(g) is the g-th suspension of N and ${}^{g}K = gKg^{-1}$ [cf. M]

4.8. Lemma. c. Let $M \in R$ -gr and $N \in (G/H, R)$ -gr. If M is N-small in R-mod then

$$\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{Hom}_R(M,N)$$

Proof.. As in the section 3 we associate to each R-morphism $f \in \operatorname{Hom}_R(M, N)$ and each $x = gH \in G/H$ a morphism $f_x \in \operatorname{HOM}_{G/H,R}(M, N)_x = \operatorname{Hom}_{(G/^gH,R)\operatorname{-gr}}(M, N(g))$ defined by $f_x(m_h) = f_{gH}(M_h) = f(m_h)_{hgH}$ for every $h \in G, m_h \in M_h$. Conform th.3.??????. $\{f_x \mid x \in G/H\}$ is summable to f in the finite topology i.e. $\sum_{x \in G/H} f_x =$ f. Since every f(m) has a unique (finite!) decomposition in homogeneous component, it follow that $supp\{f_x(m) \mid x \in G/H\}$ is finite. Thus we can define a mapping $g: M \to$ $\bigoplus_{x \in G/H} N^x$, where $N^x \cong N$, by $g(m) = (f_x(m))_{x \in G/H}$ for every $m \in M$. Obviously, g is an R-morphism and since M is N-small in R-mod, there exists $x_1, \ldots, x_n \in G/H$ such that $g(M) \subseteq \bigoplus_{i=1}^n N^{x_i}$. Therefore $f_x = 0$ for $x \in G/H \setminus \{x_1, \ldots, x_n\}$ and f = $\sum_{i=1}^n f_{x_i}$. This show that $f \in \operatorname{Hom}_{G/H,R}(M, N)$. **4.9.** Corollary. Let R be a G-graded ring and $K \leq H \leq G$. Let $M \in R$ -gr and $N \in (G/K, R)$ -gr. If M is N-small in R-mod then

$$\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N)$$

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, $K \leq H \leq G$ two subgroups such that H/K is infinite and K is normal in G. Let $M \in R$ -gr. Then the following statements are equivalent:

- (i) M is small in (G/K, R)-gr (R-mod, R-gr, (G/H, R)-gr)
- (ii)HOM_{G/H,R}(M, N) = HOM_{G/K,R}(M, N) for every $N \in (G/K, R)$ -gr

Proof. (i) \Rightarrow (ii) From prop.4.1. and corollary 4.7.

(ii) \Rightarrow (i) Let $M = \bigoplus_{g \in G} M_g \in R$ -gr such that $\operatorname{HOM}_{G/H,R}(M, N) = \operatorname{Hom}_R(M, N)$ for every $N \in (G/H, R)$ -gr. Since $K \trianglelefteq G$ we have for every $g \in G$ that ${}^gK = gKg^{-1} = K$ and the g-th suspension of N noted N(g) belongs to $(G/{}^gK, R)$ -gr = (G/K, R)-gr. The G/K-grader of N(h) is give as $N(h) = \bigoplus_{g \in [G/K]} N(h)_{gK}$ with $N(h)_{gK} = N_{ghK}$ and of $\bigoplus_{h \in [H/K]} N(h)$ as

$$\bigoplus_{h \in [H/K]} N(h) = \bigoplus_{g \in [G/K]} \left(\bigoplus_{h \in [H/K]} N_{ghK} \right)$$

Let $u \in \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M, \bigoplus_{h \in [H/K]} N(h)$ where $[H/K] \subseteq H$ is a transversely for H/K (as we have seen $\bigoplus_{h \in [H/K]} N(h) \in (G/K, R)$ -gr). Since every $n \in \bigoplus_{h \in [H/K]} N(h)$ has a unique finite decomposition $n = n(h_1) + \ldots + n(h_k)$ with $n(h_j) \in N(h_j), 1 \leq j \leq k$, we may define a R-morphism

$$t \colon \bigoplus_{h \in [H/K]} N(h) \to N \operatorname{byt}(n) = \sum_{i=1}^{k} n_{i}(h_{j}) = \sum_{h \in [H/K]} n(h).$$

In fact t is the R-morphism $\bigoplus_{h \in [H/K]} N(h) \to N$ with all component 1_N . Moreover

$$t(\bigoplus_{h\in [H/K]} N(h)_{gK}) = t(\bigoplus_{h\in [H/K]} N_{ghK}) \subseteq N_{gH}$$

, where N_{gH} is the homogeneous component of N see as G/H-graded. This show that $t \in \operatorname{HOM}_{G/H,R}(M, \bigoplus_{h \in [H/K]} N(h))$. We set $\bar{u} = t \circ u \colon M \to N$. Then

$$\bar{u} \in \operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N) = \bigoplus_{g \in [G/K]} \operatorname{HOM}_{G/K,R}(M,N)_{gK},$$

and so there exists $g_1K, \ldots, g_sK \in G/K$ and $u_{g_i} \in \operatorname{HOM}_{G/K,R}(M,N)_{g_iK} = \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,N(g_i)), 1 \leq i \leq s$ such that $\bar{u} = \sum_{i=1}^s u_{g_i}$. Thus $\bar{u}(M_g) \subseteq N(g_1)_{gK} + \ldots N(g_s)_{gK} = N_{gg_1K} + \ldots + N_{gg_sK}$ for each $g \in G$. It follows that if $m_g \in M_g$ for some $g \in G$ and $u(m_g) = (n_h)_{x \in [H/K]}$, with $n_h \in N(h)_{gK} = N_{ghK}$ then

$$\bar{u}(m_g) = \sum_{h \in [H/K]} n(h) \in N_{gg_1K} + \ldots + N_{gg_sK}.$$

This shows that n(h) = 0 for each $h \in [H/K] \setminus \{gg_1, \ldots, gg_s\}$. Consequently $\operatorname{Im} u \subseteq \bigoplus_{i=1}^n N(h_i)$ with $n \leq s$ and this inclusion hold for an arbitrary morphism $u \in \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,N)$.

Let now $f: M \to \bigoplus_{i \in \mathbb{N}} X_i$ be a morphism in (G/K, R)-gr. Let $A = \bigoplus i \in \mathbb{N}X_i$ and $N = \bigoplus_{g \in [G/K]} A(g) \in (G/K, R)$ -gr. Then N has the property that $N(g) \cong N$ in (G/K, R)-gr for each $g \in [G/K]$, in particular, for each $g = h \in [H/K]$. Since H/K is infinite, we may assume that \mathbb{N} is a subset of H/K and we obtain a monomorphism in (G/K, R)-gr:

$$v: N^{(\mathbb{N})} \to \bigoplus_{h \in [H/K]} N(h).$$

We note by $\sigma: A \to N$ and $\rho_i: X_i \to A$ the canonical injections. Since (G/K, R)-gr is AB3, the morphism

$$w = \bigoplus_{i \in \mathbb{N}} (\sigma \circ \rho_i) \colon A \to N^{(\mathbb{N})}$$

is a monomorphism. We get a morphism in (G/K, R)-gr: $v \circ w \circ f \colon M \to \bigoplus_{h \in [H/K]} N(h)$. As we have seen above, $\operatorname{Im}(v \circ w \circ f) \subseteq \bigoplus_{i=1}^{n} N^{(h_i)}$ for some elements $h_1, \ldots, h_n \in [H/K]$. Consequently $\operatorname{Im} f \subseteq \bigoplus i \in FX_i$, where $F = \mathbb{N} \cap \{h_1, \ldots, h_n\}$ and hence we see that M is small in (G/K, R)-gr.

The main result of this section is the following:

4.10. Theorem. Let R be a G-graded ring, $H \leq G$ a subgroup such that G/H is infinite and $M \in R$ -gr. Then the following statements are equivalent:

- (i) M is small in (G/H, R)-gr (R-mod, R-gr)]
- (ii) $\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{Hom}_R(M,N)$ for every $N \in (G/H,R)$ -gr.

Proof. (i) \Rightarrow (ii) from prop.4.1. and lemma 4.5.

(ii) \Rightarrow (i) Let $M = \bigoplus_{g \in G} M_g \in R$ -gr such that $\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{Hom}_R(M,N)$ for every $N \in (G/H, R)$ -gr. Let $u \in \operatorname{Hom}_{(G/H,R)\text{-gr}}(M, \bigoplus_{x \in G/H} N^x)$ where $N^x \cong N$, hence $u(M_g) \subseteq \bigoplus_{x \in G/H} (N^x)_g H$ for every $g \in G$. Since every $n \in \bigoplus_{x \in G/H} N^x$ has a unique finite decomposition $n = n_{x_1} + \ldots + n_{x_k}$ with $n_{x_j} \in N^{x_j}, 1 \leq j \leq k$, we may define a mapping

$$t: \bigoplus_{x \in G/H} N^x \to N \operatorname{byt}(n) = \sum_{i=1}^k n_{x_j} = \sum_{x \in G/H} n_x.$$

Obviously t is a R-morphism. We set $\bar{u} = t \circ u \colon M \to N$. Then

$$\bar{u} \in \operatorname{Hom}_{R}(M, N) = \operatorname{HOM}_{G/H, R}(M, N) = \bigoplus_{y \in G/H} \operatorname{HOM}_{G/H, R}(M, N)_{y},$$

and so there exists $y_1, \ldots, y_s \in G/H$ and $u_{y_i} \in \text{HOM}_{G/H,R}(M,N)_{y_i}, 1 \leq i \leq s$ such that $\bar{u} = \sum_{i=1}^s u_{y_i}$. Thus $\bar{u}(M_g) \subseteq N_{gy_1} + \ldots + N_{gy_s}$ for each $g \in G$. It follows that if $m_h \in M_h$ for some $h \in G$ and $u(m_h) = (n_x)_{x \in G/H}$, with $n_x \in (N^x)_h H$ then

$$\bar{u}(m_h) = \sum_{x \in G/H} n_x \in N_{y_1} + \ldots + N_{y_s}$$

and $N_{y_i} = N_h^{x_i} H$, for some $x_i \in G/H, 1 \leq i \leq s$. This show that $n_x = 0$ for each $x \in G/H \setminus \{x_1, \ldots, x_s\}$. Consequently $\operatorname{Im} u \subseteq \bigoplus_{i=1}^s N^{x_i}$ and this inclusion holds for an arbitrary morphism $u \in \operatorname{Hom}_{(G/H,R)-\operatorname{gr}}(M,N)$.

Now let $f: M \to \bigoplus i \in \mathbb{N}X_i$ be a morphism in (G/H, R)-gr. Let $A = \bigoplus i \in \mathbb{N}X_i$ and $N = \bigoplus_{x \in G/H} A^x \in (G/H, R)$ -gr with $A^x \cong A$. Since G/H is infinite, we may assume that \mathbb{N} is a subset of G/H and we obtain a monomorphism in (G/H, R)-gr:

$$v \colon N_{(\mathbb{N})} \to \bigoplus_{x \in G/H} N$$

We note by $\sigma: A \to N$ and $\rho_i: X_i \to A$ the canonical injections. Since (G/H, R)-gr is AB3, the morphism

$$w = \bigoplus_{i \in \mathbb{N}} (\sigma \circ \rho_i) \colon A \to N^{\mathbb{N}}$$

is a monomorphism. We get a morphism in (G/H, R)-gr: $v \circ w \circ f \colon M \to \bigoplus_{x \in G/H} N^x$ with $N^x \cong N$. As we have seen above, $\operatorname{Im}(v \circ w \circ f) \subseteq \bigoplus_{i=1}^s N^{x_i}$ for some elements $x_1, \ldots, x_s \in G/H$. Consequently $\operatorname{Im} f \subseteq \bigoplus i \in FX_i$, where $F = \mathbb{N} \cap \{x_1, \ldots, x_s\}$ and hence we see that M is small in (G/H, R)-gr.

4.11. Corollary. Let R be a G-graded ring and $K \le H \le G$ two subgroups such that H/K is infinite. Then the following statements are equivalent:

- (i) M is small in (G/H, R)-gr (R-mod, R-gr).
- (ii) $\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N)$ for every $N \in (G/K,R)$ -gr.

2.5. An another functor which we will use is the "suspension" functor:

$$\mathcal{S}_G/H^g \colon (G/H, R)$$
-gr $\to (G/^g H)$ -gr
defined by $\mathcal{S}_G/H^g(N) = N(g), g \in G$
where ${}^g H = gHg^{-1}$ and $N(g) = \bigoplus_{x \in G/^g H} N(G)_x$ with $N(g)_x = N_{xg}$.

3.6. Theorem. Let R be a G-graded ring and $H \leq G$. Let $M \in R$ -gr and $N \in (G/H, R)$ -gr. With the above notations we have:

(i) The family $\{f_x \mid x \in G/H\}$ is summable to f in the finite topology with f_x uniquely determined with the properties $f_x \in HOM_{G/H,R}(M,N)_x$ and $\sum_{x \in G/H} f_x = f$. (ii) $Hom_R(M,N)$ is the completion of $HOM_{G/H,R}(M,N)$ in the finite topology.

Proof. (i) We restrict at neighborhoods of the form $V(f, m_g)$ with $m_g \in M_g$ for some $g \in G$, a homogeneous element. Lte $f(m_g) = n_{x_1} + \ldots + n_{x_k}$ with $n_{x_j} \in N_{x_j}$ the decomposition of $f(m_g)$ in the homogeneous components. We set $J_0 = \{x_1, \ldots, x_k\}$. Then J_0 is a finite subset of G/H and $f(m_g) = (\sum_{x \in J_0} f_x(m_g)$ hence $\sum_{x \in J_0} f_x \in V(f, m_g)$. Since for each $x \in G/K \setminus J_0$ we have $f(m_g) = 0$, it follows that, for every finite subset J of I, containing J_0 , $f(m_g) = (\sum_{x \in J} f_x(m_g)$, therefore $\sum_{x \in J} f_x \in V(f, m_g)$. Consequently, $\sum_{x \in G/H} f_x = f$ in the finite topology.

For the uniqueness we assume that $g_x | x \in G/H$ is another family of morphisms such that $g_x \in \operatorname{HOM}_{G/H,R}(M,N)_x$ and $\sum_{x \in G/H} g_x = f$. If $f_{x_0} \neq g_{x_0}$ for some $x_0 \in G/H$ then there exit $m_g \in M_g$ such that $f_{x_0} \neq g_{x_0}$. We consider the neighborhood $V(f, m_g)$ of f in the finite topology. Then we may find $J_0 \in \mathcal{P}_f(G/H)$ where $\mathcal{P}_f(G/H)$ is the set of all finite subsets of G/H, whiththe property that for every $J \in \mathcal{P}_f(G/H)$ for which $J_0 \in J$ we have $\sum_{x \in G/H} f_x \in V(f, m_g)$ and $\sum_{x \in G/H} g_x \in V(f, m_g)$. We set $J = J_0 \cup \{x_0\}$. Then $J \in \mathcal{P}_f(G/H)$ and $(\sum_{x \in J} f_x(m_g) = f(m_g) = (\sum_{x \in J} g_x(m_g))$ and from the uniqueness of the decomposition in homogeneous elements it follows that $f_{x_0}(m_g) = g_{x_0}(m_g)$, which is a contradiction.

(ii) Given f belonging to $\operatorname{Hom}_R(M, N)$ Whit the above notations, for some $J \in \mathcal{P}_f(G/H)$ we have

$$\sum_{x \in J} f_x \in \bigoplus_{x \in G/H} \operatorname{HOM}_{G/H,R}(M,N)_x = \operatorname{HOM}_{G/H,R}(M,N)$$

and the result (i) implies $\operatorname{HOM}_{G/H,R}(M,N) \cap V(f,m) \neq 0$. Hence $\operatorname{HOM}_{G/H,R}(M < N)$ is dense in $\operatorname{Hom}_R(M,N)$ on the finite topology. But $\operatorname{Hom}_R(M,N)$ is a complete Hausdorff topological space in the finite topology, consequently, it is the completion of $|HOM_{G/H,R}(M,N)|$.

3.7. Remark. If $1 = H \leq G$ then (G/1, R)-gr = R-gr and the above theorem is just the theorem 1.2. of [GN].

3.8. Corollary. If R is G-graded ring and $K \leq H \leq G$ are two subgroups then $\operatorname{HOM}_{G/K,R}(M,N)$ is dense in $\operatorname{HOM}_{G/H,R}(M,N)$ on the finite topology.

3.9. Proposition. Let R be a G-graded ring, $M \in R$ -gr, and $N \in (G/K, R)$ -gr where $K \leq H \leq G$ are two subgroups. Thus each $f \in HOM_{G/H,R}(M,N)_{gH}, (g \in G)$ may be write as $f = \sum_{z \in {}^{g}H/{}^{g}K} f_z$ where $f_z \in HOM_{{}^{g}H/{}^{g}K,R}(M,N)_z$

Proof. Let

$$f \in \operatorname{HOM}_{G/H,R}(M,N)_{gH} = \operatorname{Hom}_{(G/^{g}H,R)\operatorname{-gr}}(M,N(g)) = \operatorname{HOM}_{G/^{g}H,R}(M,N)_{^{g}H}$$

Since $f \in \operatorname{Hom}_R(M, N)$ th. 3.6. give the relation $f = \sum_{h \in [G/^g K]} f_{h^g K}$ where $f_{h^g K} \in \operatorname{HOM}_{G/^g K, R}(M, N)$ and $[G/^g K] \subseteq G$ is a transversely for $G/^g K$. Moreover, we have for each $k \in G$: $f(M_k) \subseteq \mathcal{U}(N(g))_{kH} = \bigoplus_{x \in G/^g K} N(g)_x$ and $f_{h^g K} \subseteq N_{kh^g K}$. Since $\operatorname{HOM}_{G/^g H, R}(M, N)$ is a Hausdorff topological space and $f = \sum_{h \in [G/^g K]} f_{h^g K}$ it follows that $N_{kh^g K} \subseteq \bigoplus_{x \in G/^g K} N(g)_x$. Thus $f_{h^g K}(M_k) \neq$ implies $kh^g K \subseteq k^g H$

3.10. Corollary. With the notations from the prop. 3.8., if H/K is a finite set then

$$\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N)$$

The main result of this section is the following:

4.8. Theorem. Let R be a G-graded ring, $K \leq H \leq G$ two subgroups such that H/K is infinite and K is normal in G. Let $M \in R$ -gr. Then the following statements are equivalent:

(i) M is small in (G/K, R)-gr (R-mod, R-gr, (G/H, R)-gr)

(ii)HOM_{G/H,R}(M, N) = HOM_{G/K,R}(M, N) for every $N \in (G/K, R)$ -gr

Proof. (i) \Rightarrow (ii) From prop.4.1. and corollary 4.7.

(ii) \Rightarrow (i) Let $M = \bigoplus_{g \in G} M_g \in R$ -gr such that $\operatorname{HOM}_{G/H,R}(M, N) = \operatorname{Hom}_R(M, N)$ for every $N \in (G/H, R)$ -gr. Since $K \trianglelefteq G$ we have for every $g \in G$ that ${}^gK = gKg^{-1} = K$ and the g-th suspension of N noted N(g) belongs to $(G/{}^gK, R)$ -gr = (G/K, R)-gr. The G/K-grader of N(h) is give as $N(h) = \bigoplus_{g \in [G/K]} N(h)_{gK}$ with $N(h)_{gK} = N_{ghK}$ and of $\bigoplus_{h \in [H/K]} N(h)$ as

$$\bigoplus_{h \in [H/K]} N(h) = \bigoplus_{g \in [G/K]} \left(\bigoplus_{h \in [H/K]} N_{ghK} \right)$$

Let $u \in \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M, \bigoplus_{h \in [H/K]} N(h)$ where $[H/K] \subseteq H$ is a transversely for H/K (as we have seen $\bigoplus_{h \in [H/K]} N(h) \in (G/K, R)$ -gr). Since every $n \in \bigoplus_{h \in [H/K]} N(h)$

has a unique finite decomposition $n = n(h_1) + \ldots + n(h_k)$ with $n(h_j) \in N(h_j), 1 \le j \le k$, we may define a *R*-morphism

$$t: \bigoplus_{h \in [H/K]} N(h) \to N \operatorname{byt}(n) = \sum_{i=1}^{k} n(h_i) = \sum_{h \in [H/K]} n(h)$$

In fact t is the R-morphism $\bigoplus_{h \in [H/K]} N(h) \to N$ with all component 1_N . Moreover

$$t(\bigoplus_{h\in [H/K]} N(h)_{gK}) = t(\bigoplus_{h\in [H/K]} N_{ghK}) \subseteq N_{gH}$$

, where N_{gH} is the homogeneous component of N see as G/H-graded. This show that $t \in \operatorname{HOM}_{G/H,R}(M, \bigoplus_{h \in [H/K]} N(h))$. We set $\bar{u} = t \circ u \colon M \to N$. Then

$$\bar{u} \in \operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N) = \bigoplus_{g \in [G/K]} \operatorname{HOM}_{G/K,R}(M,N)_{gK},$$

and so there exists $g_1K, \ldots, g_sK \in G/K$ and $u_{g_i} \in \operatorname{HOM}_{G/K,R}(M,N)_{g_iK} = \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,N(g_i)), 1 \leq i \leq s$ such that $\bar{u} = \sum_{i=1}^s u_{g_i}$. Thus $\bar{u}(M_g) \subseteq N(g_1)_{gK} + \ldots N(g_s)_{gK} = N_{gg_1K} + \ldots + N_{gg_sK}$ for each $g \in G$. It follows that if $m_g \in M_g$ for some $g \in G$ and $u(m_g) = (n_h)_{x \in [H/K]}$, with $n_h \in N(h)_{gK} = N_{ghK}$ then

$$\bar{u}(m_g) = \sum_{h \in [H/K]} n(h) \in N_{gg_1K} + \ldots + N_{gg_sK}$$

This shows that n(h) = 0 for each $h \in [H/K] \setminus \{gg_1, \ldots, gg_s\}$. Consequently $\operatorname{Im} u \subseteq \bigoplus_{i=1}^n N(h_i)$ with $n \leq s$ and this inclusion hold for an arbitrary morphism $u \in \operatorname{Hom}_{(G/K,R)-\operatorname{gr}}(M,N)$.

Let now $f: M \to \bigoplus_{i \in \mathbb{N}} X_i$ be a morphism in (G/K, R)-gr. Let $A = \bigoplus i \in \mathbb{N}X_i$ and $N = \bigoplus_{g \in [G/K]} A(g) \in (G/K, R)$ -gr. Then N has the property that $N(g) \cong N$ in (G/K, R)-gr for each $g \in [G/K]$, in particular, for each $g = h \in [H/K]$. Since H/K is infinite, we may assume that \mathbb{N} is a subset of H/K and we obtain a monomorphism in (G/K, R)-gr:

$$v: N^{(\mathbb{N})} \to \bigoplus_{h \in [H/K]} N(h).$$

We note by $\sigma: A \to N$ and $\rho_i: X_i \to A$ the canonical injections. Since (G/K, R)-gr is AB3, the morphism

$$w = \bigoplus_{i \in \mathbb{N}} (\sigma \circ \rho_i) \colon A \to N^{(\mathbb{N})}$$

is a monomorphism. We get a morphism in (G/K, R)-gr: $v \circ w \circ f \colon M \to \bigoplus_{h \in [H/K]} N(h)$. As we have seen above, $\operatorname{Im}(v \circ w \circ f) \subseteq \bigoplus_{i=1}^{n} N^{(h_i)}$ for some elements $h_1, \ldots, h_n \in [H/K]$. Consequently $\operatorname{Im} f \subseteq \bigoplus i \in FX_i$, where $F = \mathbb{N} \cap \{h_1, \ldots, h_n\}$ and hence we see that M is small in (G/K, R)-gr. **3.9. Proposition.** With the notations from the prop. 3.8., if H/K is a finite set then

$$\operatorname{HOM}_{G/H,R}(M,N) = \operatorname{HOM}_{G/K,R}(M,N)$$

Proof. For begin let $f \in HOM_{G/H,R}(M,N)_{gH}$ and $\{h_1,\ldots,h_n\} = [H/K]$ be a transversely for H/K. Since $H = \bigcup_{h \in [H/K]} hK$ we have, for a fixed $gH \in G/H$, $gH = \bigcup_{h \in [H/K]} ghK = gh_1K \cup \ldots \cup gh_nK$, and $G/K = \{ghK \mid g \in [G/H], h \in [H/K]\}$. Thus

$$N = \bigoplus_{x \in G/K} N_x = \bigoplus_{g \in [G/K]} \left(\bigoplus_{h \in [H/K]} N_{ghK} \right) = \bigoplus_{g \in [G/H]} \left(\bigoplus_{i=1}^n N_{gh_iK} \right) = \bigoplus_{i=1}^n \left(\bigoplus_{g \in [G/H]} N_{gh_iK} \right).$$

We consider the canonical projections $p_n \colon N \to \bigoplus_{g \in [G/H]} N_{gh_iK}$ and the composition $p_n \circ f \colon M \to \bigoplus_{g \in [G/H]} N_{gh_iK}$. Since $f(M_k) \subseteq N_{kgH}$ and for each $kH \in G/H$ there exist a unique $i \in \{1, \ldots, n\}$ such that $gh_iK \subseteq kgH$. Thus f may be write as $\sum_{i=1}^n (f \circ p_n)$ with $f \circ p_n \in \operatorname{HOM}_{G/K,R}(M,N)$. Now the general case when $f \in \operatorname{HOM}_{G/H,R}(M,N)$ follow from the fact that f may be write as a finite sum of morfisms belonging to $\operatorname{HOM}_{G/H,R}(M,N)_{gH}$ with gH ranges over G/H.

References

- 3. E.C. Dade, Group-Graded Rings and Modules, Math. Z. 174 (1980), 241-262.
- 5. E.C. Dade, *Clifford theory for group graded rings*, J. Reine Angew. Math. **369** (1986), 40-86.
- 14. C. Năstăsescu, Ş. Raianu and F. van Oystaeyen, *Graded modules over G-sets*, Math. Z. **203** (1990), 605-627.
- 15. C. Năstăsescu, L. Shaoxue and F. van Oystaeyen, *Graded modules over G-sets II*, Math. Z. **207** (1991), 341-358.
- 17. C. Năstăsescu and F. van Oystaeyen, Graded Ring Theory, North-Holland, 1982.
- 22. Bo Stenstrom, Rings of Quotients, Springer-Verlag, 1975.